BCK Algebra
   HOME
*





BCK Algebra
In mathematics, BCI and BCK algebras are algebraic structures in universal algebra, which were introduced by Y. Imai, K. Iséki and S. Tanaka in 1966, that describe fragments of the propositional calculus involving implication known as BCI and BCK logics. Definition BCI algebra An algebra (in the sense of universal algebra) \left( X;\ast ,0\right) of type \left( 2,0\right) is called a ''BCI-algebra'' if, for any x,y,z\in X, it satisfies the following conditions. (Informally, we may read 0 as "truth" and x\ast y as "y implies x".) ; BCI-1: \left( \left( x\ast y\right) \ast \left( x\ast z\right) \right) \ast \left( z\ast y\right) =0 ; BCI-2: \left( x\ast \left( x\ast y\right) \right) \ast y=0 ; BCI-3: x\ast x=0 ; BCI-4: x\ast y=0 \land y\ast x=0\implies x=y ; BCI-5: x\ast 0=0 \implies x=0 BCK algebra A BCI-algebra \left( X;\ast ,0\right) is called a ''BCK-algebra'' if it satisfies the following condition: ; BCK-1: \forall x\in X: 0\ast x=0. A partial order can then be defined as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MV-algebra
In abstract algebra, a branch of pure mathematics, an MV-algebra is an algebraic structure with a binary operation \oplus, a unary operation \neg, and the constant 0, satisfying certain axioms. MV-algebras are the algebraic semantics of Łukasiewicz logic; the letters MV refer to the ''many-valued'' logic of Łukasiewicz. MV-algebras coincide with the class of bounded commutative BCK algebras. Definitions An MV-algebra is an algebraic structure \langle A, \oplus, \lnot, 0\rangle, consisting of * a non-empty set A, * a binary operation \oplus on A, * a unary operation \lnot on A, and * a constant 0 denoting a fixed element of A, which satisfies the following identities: * (x \oplus y) \oplus z = x \oplus (y \oplus z), * x \oplus 0 = x, * x \oplus y = y \oplus x, * \lnot \lnot x = x, * x \oplus \lnot 0 = \lnot 0, and * \lnot ( \lnot x \oplus y)\oplus y = \lnot ( \lnot y \oplus x) \oplus x. By virtue of the first three axioms, \langle A, \oplus, 0 \rangle is a commutat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Basic idea In universal algebra, an algebra (or algebraic structure) is a set ''A'' together with a collection of operations on ''A''. An ''n''- ary operation on ''A'' is a function that takes ''n'' elements of ''A'' and returns a single element of ''A''. Thus, a 0-ary operation (or ''nullary operation'') can be represented simply as an element of ''A'', or a '' constant'', often denoted by a letter like ''a''. A 1-ary operation (or ''unary operation'') is simply a function from ''A'' to ''A'', often denoted by a symbol placed in front of its argument, like ~''x''. A 2-ary operation (or ''binary operation'') is often denoted by a symbol placed between its argum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Implicational Propositional Calculus
In mathematical logic, the implicational propositional calculus is a version of classical propositional calculus which uses only one connective, called implication or conditional. In formulas, this binary operation is indicated by "implies", "if ..., then ...", "→", "\rightarrow ", etc.. Functional (in)completeness Implication alone is not functionally complete as a logical operator because one cannot form all other two-valued truth functions from it. For example, the two-place truth function that always returns '' false'' is not definable from → and arbitrary sentence variables: any formula constructed from → and propositional variables must receive the value ''true'' when all of its variables are evaluated to true. It follows that is not functionally complete. However, if one adds a nullary connective ⊥ for falsity, then one can define all other truth functions. Formulas over the resulting set of connectives are called f-implicational. If ''P'' and ''Q'' are proposit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BCK Logic
BCK is the abbreviation of: * Bahria College Karachi college in Karachi, Pakistan * BC Kosher, a kosher certification agency in Canada * BCK algebra, in mathematics, BCK or BCI algebras are algebraic structures * British Rail coach type code representing a Brake composite corridor coach * Buckley railway station, a railway station in the UK * Buckie, a town in Scotland * Compagnie du chemin de fer du bas-Congo au Katanga The ''Compagnie du chemin de fer du bas-Congo au Katanga'' (BCK) was a railway operator in the Congo Free State, Belgian Congo and later in the Democratic Republic of the Congo and Zaire. Most of the lines were in the southern Katanga Province, wit ..., former railway company in Congo * 3-Methyl-2-oxobutanoate dehydrogenase (acetyl-transferring) kinase, an enzyme {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Greatest Lower Bound
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and max ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as partially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complement (set Theory)
In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^\complement = U \setminus A. Or formally: A^\complement = \. The absolute complement of is u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra (structure)
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. __TOC__ History The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structures
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]