HOME
*





Brauer's Theorem On Forms
:''There also is Brauer's theorem on induced characters.'' In mathematics, Brauer's theorem, named for Richard Brauer, is a result on the representability of 0 by forms over certain fields in sufficiently many variables. Statement of Brauer's theorem Let ''K'' be a field such that for every integer ''r'' > 0 there exists an integer ψ(''r'') such that for ''n'' ≥ ψ(r) every equation :(*)\qquad a_1x_1^r+\cdots+a_nx_n^r=0,\quad a_i\in K,\quad i=1,\ldots,n has a non-trivial (i.e. not all ''x''''i'' are equal to 0) solution in ''K''. Then, given homogeneous polynomials ''f''1,...,''f''''k'' of degrees ''r''1,...,''r''''k'' respectively with coefficients in ''K'', for every set of positive integers ''r''1,...,''r''''k'' and every non-negative integer ''l'', there exists a number ω(''r''1,...,''r''''k'',''l'') such that for ''n'' ≥ ω(''r''1,...,''r''''k'',''l'') there exists an ''l''-dimensional affine subspace ''M'' of ''Kn'' (regarded as a vector space over ''K'') satisfying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer's Theorem On Induced Characters
Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, within representation theory of a finite group. Background A precursor to Brauer's induction theorem was Artin's induction theorem, which states that , ''G'', times the trivial character of ''G'' is an integer combination of characters which are each induced from trivial characters of cyclic subgroups of ''G.'' Brauer's theorem removes the factor , ''G'', , but at the expense of expanding the collection of subgroups used. Some years after the proof of Brauer's theorem appeared, J.A. Green showed (in 1955) that no such induction theorem (with integer combinations of characters induced from linear characters) could be proved with a collection of subgroups smaller than the Brauer elementary subgroups. Another result between Artin's induction theorem and Brauer's induction theorem, also due to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Brauer
Richard Dagobert Brauer (February 10, 1901 – April 17, 1977) was a leading German and American mathematician. He worked mainly in abstract algebra, but made important contributions to number theory. He was the founder of modular representation theory. Education and career Alfred Brauer was Richard's brother and seven years older. They were born to a Jewish family. Both were interested in science and mathematics, but Alfred was injured in combat in World War I. As a boy, Richard dreamt of becoming an inventor, and in February 1919 enrolled in Technische Hochschule Berlin-Charlottenburg. He soon transferred to University of Berlin. Except for the summer of 1920 when he studied at University of Freiburg, he studied in Berlin, being awarded his PhD on 16 March 1926. Issai Schur conducted a seminar and posed a problem in 1921 that Alfred and Richard worked on together, and published a result. The problem also was solved by Heinz Hopf at the same time. Richard wrote his thesi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Subspace
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point. In an affine space, there are instead '' displacement vectors'', also called ''translation'' vectors or simply ''translations'', between two points of the space. Thus it makes sense to subtract two points of the space, giving a translation vector, but it does not make sense to add two points of the space. Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. Any vector space may be viewed as an affine spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Number
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrian and Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as “opera singer” though others list it as “art dealer.” It seems at least plausible that he and Emma had ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-algebraic Closure
In mathematics, a field ''F'' is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial ''P'' over ''F'' has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper . The idea itself is attributed to Lang's advisor Emil Artin. Formally, if ''P'' is a non-constant homogeneous polynomial in variables :''X''1, ..., ''X''''N'', and of degree ''d'' satisfying :''d'' < ''N'' then it has a non-trivial zero over ''F''; that is, for some ''x''''i'' in ''F'', not all 0, we have :''P''(''x''''1'', ..., ''x''''N'') = 0. In geometric language, the defined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Doklady Akademii Nauk SSSR
The ''Proceedings of the USSR Academy of Sciences'' (russian: Доклады Академии Наук СССР, ''Doklady Akademii Nauk SSSR'' (''DAN SSSR''), french: Comptes Rendus de l'Académie des Sciences de l'URSS) was a Soviet journal that was dedicated to publishing original, academic research papers in physics, mathematics, chemistry, geology, and biology. It was first published in 1933 and ended in 1992 with volume 322, issue 3. Today, it is continued by ''Doklady Akademii Nauk'' (russian: Доклады Академии Наук), which began publication in 1992. The journal is also known as the ''Proceedings of the Russian Academy of Sciences (RAS)''. ''Doklady'' has had a complicated publication and translation history. A number of translation journals exist which publish selected articles from the original by subject section; these are listed below. History The Russian Academy of Sciences dates from 1724, with a continuous series of variously named publications dat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Guy Terjanian
Guy Terjanian is a French mathematician who has worked on algebraic number theory. He achieved his Ph.D. under Claude Chevalley in 1966, and at that time published a counterexample to the original form of a conjecture of Emil Artin, which suitably modified had just been proved as the Ax-Kochen theorem. In 1977, he proved that if ''p'' is an odd prime number, and the natural numbers ''x'', ''y'' and ''z'' satisfy x^ + y^ = z^, then ''2p'' must divide ''x'' or ''y''.G. Terjanian, ''Sur l'equation x^+ y^ = z^ ','' CR. Acad. Sc. Paris. ,. 285. (1977), 973-975. See also *Ax–Kochen theorem The Ax–Kochen theorem, named for James Ax and Simon B. Kochen, states that for each positive integer ''d'' there is a finite set ''Yd'' of prime numbers, such that if ''p'' is any prime not in ''Yd'' then every homogeneous polynomial of degree '' ... References Further readingmath.unicaen.frarticle ''Topic: Arithmetic & geometry'' French people of Armenian descent 20th-century French m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ax–Kochen Theorem
The Ax–Kochen theorem, named for James Ax and Simon B. Kochen, states that for each positive integer ''d'' there is a finite set ''Yd'' of prime numbers, such that if ''p'' is any prime not in ''Yd'' then every homogeneous polynomial of degree ''d'' over the p-adic numbers in at least ''d''2 + 1 variables has a nontrivial zero. The proof of the theorem The proof of the theorem makes extensive use of methods from mathematical logic, such as model theory. One first proves Serge Lang's theorem, stating that the analogous theorem is true for the field F''p''((''t'')) of formal Laurent series over a finite field F''p'' with Y_d = \varnothing. In other words, every homogeneous polynomial of degree ''d'' with more than ''d''2 variables has a non-trivial zero (so F''p''((''t'')) is a C2 field). Then one shows that if two Henselian valued fields have equivalent valuation groups and residue fields, and the residue fields have characteristic 0, then they are elementarily equi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]