Braided Vector Space
In mathematics, a braided vectorspace \;V is a vector space together with an additional structure map \tau symbolizing interchanging of two vector tensor copies: ::\tau:\; V\otimes V\longrightarrow V\otimes V such that the Yang–Baxter equation is fulfilled. Hence drawing tensor diagrams with \tau an overcrossing the corresponding composed morphism is unchanged when a Reidemeister move is applied to the tensor diagram and thus they present a representation of the braid group. As first example, every vector space is braided via the trivial braiding (simply flipping). A superspace has a braiding with negative sign in braiding two odd vectors. More generally, a diagonal braiding means that for a \;V-base x_i we have ::\tau(x_i\otimes x_j)=q_(x_j\otimes x_i) A good source for braided vector spaces entire braided monoidal categories with braidings between any objects \tau_, most importantly the modules over quasitriangular Hopf algebras and Yetter–Drinfeld modules over finit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Braided Hopf Algebra
In mathematics, a braided Hopf algebra is a Hopf algebra in a braided monoidal category. The most common braided Hopf algebras are objects in a Yetter–Drinfeld category of a Hopf algebra ''H'', particularly the Nichols algebra of a braided vector space in that category. ''The notion should not be confused with quasitriangular Hopf algebra.'' Definition Let ''H'' be a Hopf algebra over a field ''k'', and assume that the antipode of ''H'' is bijective. A Yetter–Drinfeld module ''R'' over ''H'' is called a braided bialgebra in the Yetter–Drinfeld category ^H_H\mathcal if * (R,\cdot ,\eta ) is a unital associative algebra, where the multiplication map \cdot :R\times R\to R and the unit \eta :k\to R are maps of Yetter–Drinfeld modules, * (R,\Delta ,\varepsilon ) is a coassociative coalgebra with counit \varepsilon , and both \Delta and \varepsilon are maps of Yetter–Drinfeld modules, * the maps \Delta :R\to R\otimes R and \varepsilon :R\to k are algebra map ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable ideals; * the radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple. Semisimple L ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poincaré–Birkhoff–Witt Theorem
In mathematics, more specifically in the theory of Lie algebras, the Poincaré–Birkhoff–Witt theorem (or PBW theorem) is a result giving an explicit description of the universal enveloping algebra of a Lie algebra. It is named after Henri Poincaré, Garrett Birkhoff, and Ernst Witt. The terms ''PBW type theorem'' and ''PBW theorem'' may also refer to various analogues of the original theorem, comparing a filtered algebra to its associated graded algebra, in particular in the area of quantum groups. Statement of the theorem Recall that any vector space ''V'' over a field has a basis; this is a set ''S'' such that any element of ''V'' is a unique (finite) linear combination of elements of ''S''. In the formulation of Poincaré–Birkhoff–Witt theorem we consider bases of which the elements are totally ordered by some relation which we denote ≤. If ''L'' is a Lie algebra over a field K, let ''h'' denote the canonical K-linear map from ''L'' into the universal envelopi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynkin Diagram
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' Dynkin diagrams will be explicitly so named. Classification of semisimple ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Root System
In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. Definitions and examples As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots. These vectors Linear span, s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Group
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group. The term "quantum group" first appeared in the theory of quantum integrable systems, which was then formalized by Vladimir Drinfeld and Michio Jimbo as a particular class of Hopf algebra. The same term is also used for other Hopf algebras that deform or are close to classical Lie groups or Lie algebras, such as a "bicrossproduct" class of quantum groups introduced by Shahn Majid a little after the work of Drinfeld and Jimbo. In Drinfeld's approach, quantum groups arise as Hopf algebras depe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nichols Algebra
In algebra, the Nichols algebra of a braided vector space (with the braiding often induced by a finite group) is a braided Hopf algebra which is denoted by \mathfrak(V) and named after the mathematician Warren Nichols. It takes the role of quantum Borel part of a pointed Hopf algebra such as a quantum groups and their well known finite-dimensional truncations. Nichols algebras can immediately be used to write down new such quantum groups by using the Radford biproduct. The classification of all such Nichols algebras and even all associated quantum groups (see Application) has been progressing rapidly, although still much is open: The case of an abelian group was solved in 2005, but otherwise this phenomenon seems to be very rare, with a handful examples known and powerful negation criteria established (see below). See also this List of finite-dimensional Nichols algebras. The finite-dimensional theory is greatly governed by a theory of root systems and Dynkin diagrams, strikingl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The expr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Yetter–Drinfeld Category
In mathematics a Yetter–Drinfeld category is a special type of braided monoidal category. It consists of modules over a Hopf algebra which satisfy some additional axioms. Definition Let ''H'' be a Hopf algebra over a field ''k''. Let \Delta denote the coproduct and ''S'' the antipode of ''H''. Let ''V'' be a vector space over ''k''. Then ''V'' is called a (left left) Yetter–Drinfeld module over ''H'' if * (V,\boldsymbol) is a left ''H''-module, where \boldsymbol: H\otimes V\to V denotes the left action of ''H'' on ''V'', * (V,\delta\;) is a left ''H''-comodule, where \delta : V\to H\otimes V denotes the left coaction of ''H'' on ''V'', * the maps \boldsymbol and \delta satisfy the compatibility condition :: \delta (h\boldsymbolv)=h_v_S(h_) \otimes h_\boldsymbolv_ for all h\in H,v\in V, :where, using Sweedler notation, (\Delta \otimes \mathrm)\Delta (h)=h_\otimes h_ \otimes h_ \in H\otimes H\otimes H denotes the twofold coproduct of h\in H , and \delta (v)=v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). Tenso ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasitriangular Hopf Algebra
In mathematics, a Hopf algebra, ''H'', is quasitriangularMontgomery & Schneider (2002), p. 72 if there exists an invertible element, ''R'', of H \otimes H such that :*R \ \Delta(x)R^ = (T \circ \Delta)(x) for all x \in H, where \Delta is the coproduct on ''H'', and the linear map T : H \otimes H \to H \otimes H is given by T(x \otimes y) = y \otimes x, :*(\Delta \otimes 1)(R) = R_ \ R_, :*(1 \otimes \Delta)(R) = R_ \ R_, where R_ = \phi_(R), R_ = \phi_(R), and R_ = \phi_(R), where \phi_ : H \otimes H \to H \otimes H \otimes H, \phi_ : H \otimes H \to H \otimes H \otimes H, and \phi_ : H \otimes H \to H \otimes H \otimes H, are algebra morphisms determined by :\phi_(a \otimes b) = a \otimes b \otimes 1, :\phi_(a \otimes b) = a \otimes 1 \otimes b, :\phi_(a \otimes b) = 1 \otimes a \otimes b. ''R'' is called the R-matrix. As a consequence of the properties of quasitriangularity, the R-matrix, ''R'', is a solution of the Yang–Baxter equation (and so a module ''V'' of ''H'' c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |