Brahmagupta Matrix
In mathematics, the following matrix was given by Indian mathematician Brahmagupta: :B(x,y) = \begin x & y \\ \pm ty & \pm x \end. It satisfies :B(x_1,y_1) B(x_2,y_2) = B(x_1 x_2 \pm ty_1 y_2,x_1 y_2 \pm y_1 x_2).\, Powers of the matrix are defined by :B^n = \begin x & y \\ ty & x \end^n = \begin x_n & y_n \\ ty_n & x_n \end \equiv B_n. The \ x_n and \ y_n are called Brahmagupta polynomials. The Brahmagupta matrices can be extended to negative integers: :B^ = \begin x & y \\ ty & x \end^ = \begin x_ & y_ \\ ty_ & x_ \end \equiv B_. See also *Brahmagupta's identity * Brahmagupta's function References External links * Eric Weisstein. Brahmagupta Matrix', MathWorld ''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Dig ..., 1999. * Brahmagupta Matrices {{math-hist-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indian Mathematics
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta, Bhaskara II, and Varāhamihira. The decimal number system in use today: "The measure of the genius of Indian civilisation, to which we owe our modern (number) system, is all the greater in that it was the only one in all history to have achieved this triumph. Some cultures succeeded, earlier than the Indian, in discovering one or at best two of the characteristics of this intellectual feat. But none of them managed to bring together into a complete and coherent system the necessary and sufficient conditions for a number-system with the same potential as our own." was first recorded in Indian mathematics. Indian mathematicians made early contributions to the study of the concept of zero as a number,: "...our decimal system, which (by t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brahmagupta
Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical treatise, and the '' Khaṇḍakhādyaka'' ("edible bite", dated 665), a more practical text. Brahmagupta was the first to give rules for computing with ''zero''. The texts composed by Brahmagupta were in elliptic verse in Sanskrit, as was common practice in Indian mathematics. As no proofs are given, it is not known how Brahmagupta's results were derived. In 628 CE, Brahmagupta first described gravity as an attractive force, and used the term "gurutvākarṣaṇam (गुरुत्वाकर्षणम्)" in Sanskrit to describe it. Life and career Brahmagupta was born in 598 CE according to his own statement. He lived in ''Bhillamāla'' in Gurjaradesa (modern Bhinmal in Rajasthan, India) during the reign of the Chavda dynasty ruler, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brahmagupta Polynomial
Brahmagupta polynomials are a class of polynomials associated with the Brahmagupa matrix which in turn is associated with the Brahmagupta's identity. The concept and terminology were introduced by E. R. Suryanarayan, University of Rhode Island, Kingston in a paper published in 1996. These polynomials have several interesting properties and have found applications in tiling problems and in the problem of finding Heronian triangles in which the lengths of the sides are consecutive integers. Definition Brahmagupta's identity In algebra, Brahmagupta's identity says that, for given integer N, the product of two numbers of the form x^2 -Ny^2 is again a number of the form. More precisely, we have :(x_1^2 - Ny_1^2)(x_2^2 - Ny_2^2) = (x_1x_2 + Ny_1y_2)^2 - N(x_1y_2 + x_2y_1)^2. This identity can be used to generate infinitely many solutions to the Pell's equation. It can also be used to generate successively better rational approximations to square roots of arbitrary integers. Brahma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Negative Number
In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as ''positive'' and ''negative''. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, −(−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of three, and is pronounced "min ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brahmagupta's Identity
In algebra, Brahmagupta's identity says that, for given n, the product of two numbers of the form a^2+nb^2 is itself a number of that form. In other words, the set of such numbers is closed under multiplication. Specifically: :\begin \left(a^2 + nb^2\right)\left(c^2 + nd^2\right) & = \left(ac-nbd\right)^2 + n\left(ad+bc\right)^2 & & & (1) \\ & = \left(ac+nbd\right)^2 + n\left(ad-bc\right)^2, & & & (2) \end Both (1) and (2) can be verified by expanding each side of the equation. Also, (2) can be obtained from (1), or (1) from (2), by changing ''b'' to −''b''. This identity holds in both the ring of integers and the ring of rational numbers, and more generally in any commutative ring. History The identity is a generalization of the so-called Fibonacci identity (where ''n''=1) which is actually found in Diophantus' '' Arithmetica'' (III, 19). That identity was rediscovered by Brahmagupta (598–668), an Indian mathem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MathWorld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Digital Library grant to the University of Illinois at Urbana–Champaign. History Eric W. Weisstein, the creator of the site, was a physics and astronomy student who got into the habit of writing notes on his mathematical readings. In 1995 he put his notes online and called it "Eric's Treasure Trove of Mathematics." It contained hundreds of pages/articles, covering a wide range of mathematical topics. The site became popular as an extensive single resource on mathematics on the web. Weisstein continuously improved the notes and accepted corrections and comments from online readers. In 1998, he made a contract with CRC Press and the contents of the site were published in print and CD-ROM form, titled "CRC Concise Encyclopedia of Mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |