HOME
*





Brahmagupta's Theorem
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. It is named after the Indian mathematician Brahmagupta (598-668). Coxeter, H. S. M.; Greitzer, S. L.: ''Geometry Revisited''. Washington, DC: Math. Assoc. Amer., p. 59, 1967 More specifically, let ''A'', ''B'', ''C'' and ''D'' be four points on a circle such that the lines ''AC'' and ''BD'' are perpendicular. Denote the intersection of ''AC'' and ''BD'' by ''M''. Drop the perpendicular from ''M'' to the line ''BC'', calling the intersection ''E''. Let ''F'' be the intersection of the line ''EM'' and the edge ''AD''. Then, the theorem states that ''F'' is the midpoint ''AD''. Proof We need to prove that ''AF'' = ''FD''. We will prove that both ''AF'' and ''FD'' are in fact equal to ''FM''. To prove that ''AF'' = ''FM'', first note that th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Midpoint
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment. Formula The midpoint of a segment in ''n''-dimensional space whose endpoints are A = (a_1, a_2, \dots , a_n) and B = (b_1, b_2, \dots , b_n) is given by :\frac. That is, the ''i''th coordinate of the midpoint (''i'' = 1, 2, ..., ''n'') is :\frac 2. Construction Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction. The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the arcs intersect). The point where the line connecting the cusps intersects the segment is then the midpoint of the segment. It is more ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Mathematics, senior instructor at Hebrew University and software consultant at Ben Gurion University. He wrote extensively about arithmetic, probability, algebra, geometry, trigonometry and mathematical games. He was known for his contribution to heuristics and mathematics education, creating and maintaining the mathematically themed educational website ''Cut-the-Knot'' for the Mathematical Association of America (MAA) Online. He was a pioneer in mathematical education on the internet, having started ''Cut-the-Knot'' in October 1996.Interview with Alexander ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brahmagupta's Formula
In Euclidean geometry, Brahmagupta's formula is used to find the area of any cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides; its generalized version (Bretschneider's formula) can be used with non-cyclic quadrilateral. Heron's formula can be thought as a sub-case of the Brahmagupta's formula. Formula Brahmagupta's formula gives the area of a cyclic quadrilateral whose sides have lengths , , , as : K=\sqrt where , the semiperimeter, is defined to be : s=\frac. This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula. If the semiperimeter is not used, Brahmagupta's formula is : K=\frac\sqrt. Another equivalent version is : K=\frac\cdot Proof Trigonometric p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isosceles Triangle
In geometry, an isosceles triangle () is a triangle that has two sides of equal length. Sometimes it is specified as having ''exactly'' two sides of equal length, and sometimes as having ''at least'' two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids. The mathematical study of isosceles triangles dates back to ancient Egyptian mathematics and Babylonian mathematics. Isosceles triangles have been used as decoration from even earlier times, and appear frequently in architecture and design, for instance in the pediments and gables of buildings. The two equal sides are called the legs and the third side is called the base of the triangle. The other dimensions of the triangle, such as its height, area, and perimeter, can be calculated by simple formulas from the lengths of the legs an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complementary Angles
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles are also formed by the intersection of two planes. These are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection. ''Angle'' is also used to designate the measure of an angle or of a rotation. This measure is the ratio of the length of a circular arc to its radius. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. History and etymology The word ''angle'' comes from the Latin word ''angulus'', meaning "corner"; cognate words are the Greek ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inscribed Angle
In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle. Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle subtending the same arc. The inscribed angle theorem appears as Proposition 20 on Book 3 of Euclid's ''Elements''. Theorem Statement The inscribed angle theorem states that an angle ''θ'' inscribed in a circle is half of the central angle 2''θ'' that subtends the same arc on the circle. Therefore, the angle does not change as its vertex is moved to different positions on the circle. Proof Inscribed angles where one chord is a diameter Let ''O'' be the center of a circle, as in the diagram at right. Choose two points on the circle, and call them ''V'' an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proof Of Brahmagupta's Theorem
Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a construct in proof theory * Mathematical proof, a convincing demonstration that some mathematical statement is necessarily true * Proof complexity, computational resources required to prove statements * Proof procedure, method for producing proofs in proof theory * Proof theory, a branch of mathematical logic that represents proofs as formal mathematical objects * Statistical proof, demonstration of degree of certainty for a hypothesis Law and philosophy * Evidence, information which tends to determine or demonstrate the truth of a proposition * Evidence (law), tested evidence or a legal proof * Legal burden of proof, duty to establish the truth of facts in a trial * Philosophic burden of proof, obligation on a party in a dispute to provide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harold Scott MacDonald Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington to Harold Samuel Coxeter and Lucy (). His father had taken over the family business of Coxeter & Son, manufacturers of surgical instruments and compressed gases (including a mechanism for anaesthetising surgical patients with nitrous oxide), but was able to retire early and focus on sculpting and baritone singing; Lucy Coxeter was a portrait and landscape painter who had attended the Royal Academy of Arts. A maternal cousin was the architect Sir Giles Gilbert Scott. In his youth, Coxeter composed music and was an accomplished pianist at the age of 10. Roberts, Siobhan, ''King of Infinite Space: Donald Coxeter, The Man Who Saved Geometry'', Walker & Company, 2006, He felt that mathematics and music were intimately related, outlining his i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brahmagupta
Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical treatise, and the '' Khaṇḍakhādyaka'' ("edible bite", dated 665), a more practical text. Brahmagupta was the first to give rules for computing with ''zero''. The texts composed by Brahmagupta were in elliptic verse in Sanskrit, as was common practice in Indian mathematics. As no proofs are given, it is not known how Brahmagupta's results were derived. In 628 CE, Brahmagupta first described gravity as an attractive force, and used the term "gurutvākarṣaṇam (गुरुत्वाकर्षणम्)" in Sanskrit to describe it. Life and career Brahmagupta was born in 598 CE according to his own statement. He lived in ''Bhillamāla'' in Gurjaradesa (modern Bhinmal in Rajasthan, India) during the reign of the Chavda dynasty ruler, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Indian Mathematicians
chronology of Indian mathematicians spans from the Indus Valley civilisation and the Vedas to Modern India. Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians in the modern era. Hindu-Arabic numerals predominantly used today and likely into the future. Ancient * Baudhayana sutras (fl. c. 900 BCE) *Yajnavalkya (700 BCE) *Manava (fl. 750–650 BCE) *Apastamba Dharmasutra (c. 600 BCE) *''Pāṇini'' (c. 520–460 BCE) * Kātyāyana (fl. c. 300 BCE) * Akspada Gautama(c. 600 BCE–200 CE) *Bharata Muni (200 BCE-200 CE) *Pingala (c. 3rd/2nd century BCE) Classical Post-Vedic Sanskrit to Pala period mathematicians (2nd century BCE to 11th century CE) Medieval Period (1200–1800) Kerala School of Mathematics and Astronomy * Madhava of Sangamagrama * Parameshvara (1360–1455), discovered drk-ganita, a mode of astronomy based on observations * Nilakantha Somayaji (1444–1545), mathematician and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]