Bradyons
The physics technical term massive particle refers to a massful particle which has real non-zero rest mass (such as baryonic matter), the counter-part to the term massless particle. According to special relativity, the velocity of a massive particle is always less than the speed of light. When highlighting relativistic speeds, the synonyms bradyon (from el, βραδύς, ''bradys'', “slow”), tardyon or ittyon are sometimes used to contrast with luxon (which moves at light speed) and hypothetical tachyon (which moves faster than light). Dark matter Types of massive particles include weakly interacting and stable massive particles, which are hypothesized to constitute dark matter. See also * Elementary particle * Massless particle * Particle * Tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle
In the Outline of physical science, physical sciences, a particle (or corpuscule in older texts) is a small wikt:local, localized physical body, object which can be described by several physical property, physical or chemical property, chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic scale, microscopic particles like atoms and molecules, to macroscopic scale, macroscopic particles like powder (substance), powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion (physics), motion. The term ''particle'' is rather general in meaning, and is refined as needed by various scientific fields. Anything that is composed of particles may be referred to as being particulate. However, the noun ''particulates, particulate'' is most frequently ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weakly Interacting Massive Particles
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, a WIMP is a new elementary particle which interacts via gravity and any other force (or forces), potentially not part of the Standard Model itself, which is as weak as or weaker than the weak nuclear force, but also non-vanishing in its strength. Many WIMP candidates are expected to have been produced thermally in the early Universe, similarly to the particles of the Standard Model according to Big Bang cosmology, and usually will constitute cold dark matter. Obtaining the correct abundance of dark matter today via thermal production requires a self-annihilation cross section of \langle \sigma v \rangle \simeq 3 \times 10^ \mathrm^ \;\mathrm^, which is roughly what is expected for a new particle in the 100 GeV mass range that interacts via the electroweak force. Experimental efforts to dete ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tachyon
A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow down to the speed of light. No verifiable experimental evidence for the existence of such particles has been found. In the 1967 paper that coined the term, Gerald Feinberg proposed that tachyonic particles could be made from excitations of a quantum field with imaginary mass. However, it was soon realized that Feinberg's model did not in fact allow for superluminal (faster-than-light) particles or signals and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle
In the Outline of physical science, physical sciences, a particle (or corpuscule in older texts) is a small wikt:local, localized physical body, object which can be described by several physical property, physical or chemical property, chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic scale, microscopic particles like atoms and molecules, to macroscopic scale, macroscopic particles like powder (substance), powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion (physics), motion. The term ''particle'' is rather general in meaning, and is refined as needed by various scientific fields. Anything that is composed of particles may be referred to as being particulate. However, the noun ''particulates, particulate'' is most frequently ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Massless Particle
In particle physics, a massless particle is an elementary particle whose invariant mass is zero. There are two known gauge boson massless particles: the photon (carrier of electromagnetism) and the gluon (carrier of the strong force). However, gluons are never observed as free particles, since they are confined within hadrons. In addition the Weyl semimetal or Weyl fermion discovered in 2015 is also massless. Neutrinos were originally thought to be massless. However, because neutrinos change flavor as they travel, at least two of the types of neutrinos must have mass. The discovery of this phenomenon, known as neutrino oscillation, led to Canadian scientist Arthur B. McDonald and Japanese scientist Takaaki Kajita sharing the 2015 Nobel prize in physics. *Note that although literal Weyl fermions have never been experimentally confirmed to physically exist, certain systems can act collectively such that they seem to contain Weyl fermion quasiparticles. See also *Relativistic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, antiquarks, and antileptons, which generally are matter particles and antimatter particles), as well as the fundamental bosons ( gauge bosons and the Higgs boson), which generally are force particles that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle. Ordinary matter is composed of atoms, once presumed to be elementary particles – ''atomos'' meaning "unable to be cut" in Greek – although the atom's existence remained controversial until about 1905, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy. Subatomic constituents of the atom were first identified in the early 1930s; the electron and the proto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dark Matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observationsincluding gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seenimply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution. The primary evidence for dark matter comes from calculations showing that many galaxies would behave quite differently if they did not contain a large amount of unseen matter. Some galaxies would not have formed at all and others would not move as they currently do. Other lines of evidence include observa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stable Massive Particles
Stable massive particles (SMPs) are hypothetical particles that are long-lived and have appreciable mass. The precise definition varies depending on the different experimental or observational searches. SMPs may be defined as being at least as massive as electrons, and not decaying during its passage through a detector. They can be neutral or charged or carry a fractional charge, and interact with matter through gravitational force, strong force, weak force, electromagnetic force or any unknown force. If new SMPs are ever discovered, several questions related to the origin and constituent of dark matter, and about the unification of four fundamental forces may be answered. Collider experiments Heavy, exotic particles interacting with matter and which can be directly detected through collider experiments are termed as stable massive particles or SMPs. More specifically a SMP is defined to be a particle that can pass through a detector without decaying and can undergo electromagne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faster Than Light
Faster-than-light (also FTL, superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (). The special theory of relativity implies that only particles with zero rest mass (i.e., photons) may travel ''at'' the speed of light, and that nothing may travel faster. Particles whose speed exceeds that of light (tachyons) have been hypothesized, but their existence would violate causality and would imply time travel. The scientific consensus is that they do not exist. "Apparent" or "effective" FTL, on the other hand, depends on the hypothesis that unusually distorted regions of spacetime might permit matter to reach distant locations in less time than light could in normal ("undistorted") spacetime. As of the 21st century, according to current scientific theories, matter is required to travel at slower-than-light (also STL or subluminal) speed with respect to the locally distorted spacetime region. Appar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tachyon
A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow down to the speed of light. No verifiable experimental evidence for the existence of such particles has been found. In the 1967 paper that coined the term, Gerald Feinberg proposed that tachyonic particles could be made from excitations of a quantum field with imaginary mass. However, it was soon realized that Feinberg's model did not in fact allow for superluminal (faster-than-light) particles or signals and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |