Bradbury–Nielsen Shutter
A Bradbury–Nielsen shutter (or Bradbury–Nielsen gate) is a type of electrical ion gate, which was first proposed in an article by Norris Bradbury and Russel A. Nielsen, where they used it as an electron filter. Today they are used in the field of mass spectrometry where they are used in both Time-of-flight mass spectrometry, TOF mass spectrometers and in ion mobility spectrometers , as well as Hadamard transform mass spectrometers (a variant of TOF-MS). The Bradbury–Nielsen shutter is ideal for injecting short pulses of ions and can be used to improve the mass resolution of TOF instruments by reducing the initial pulse size as compared to other methods of ion injection. Theory of operation The concept behind the Bradbury–Nielsen shutter is to apply a high frequency voltage in a 180° out-of-phase manner to alternate wires in a grid which is orthogonal to the path of the ion beam. This results in charged particles only passing directly through the shutter at certain times in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The American Society For Mass Spectrometry
The ''Journal of the American Society for Mass Spectrometry'' is a monthly peer-reviewed scientific journal published by ACS Publications since 2020. From 2011-2019 it was published by Springer Science+Business Media and prior to that by Elsevier. It is the official publication of the American Society for Mass Spectrometry and freely available to members. The journal covers all aspects of mass spectrometry. Until 2015, Michael L. Gross (Washington University in St. Louis) was the founding editor-in-chief; he was succeeded by Joseph A. Loo (University of California, Los Angeles). The journal is abstracted and indexed in MEDLINE MEDLINE (Medical Literature Analysis and Retrieval System Online, or MEDLARS Online) is a bibliographic database of life sciences and biomedical information. It includes bibliographic information for articles from academic journals covering medic .... References External links * Delayed open access journals Mass spectrometry journals Publications e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ion Mobility Spectrometer
Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detecting drugs and explosives, the technique also has many laboratory analytical applications, including the analysis of both small and large biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitori ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Silicon On Insulator
In semiconductor manufacturing, silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire (these types of devices are called silicon on sapphire, or SOS). The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application. Industry need SOI technology is one of several manufacturing strategies to allow the continued miniaturization of microelectronic devices, colloquially referred to as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Micromachine
Micromachines are mechanical objects that are fabricated in the same general manner as integrated circuits. They are generally considered to be between 100 nanometres to 100 micrometres in size, though that is debatable. The applications of micromachines include accelerometers that detect when a car has hit an object and trigger an airbag. Complex systems of gears and levers are another application. Fabrication The fabrication of these devices is usually done by two techniques, surface micromachining and bulk micromachining. To do bulk micromachining, the region needed is highly doped with boron and the unwanted silicon is etched in liquid silicon etches. This technique is termed an etchstop as the doping of boron produces an unetchable layer/pattern. Transducers Most micromachines act as transducers; in other words, they are either sensors or actuators. Sensors convert information from the environment into interpretable electrical signals. One example of a micromachine se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charged Particles
In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, which are all believed to have the same charge (except antimatter). Another charged particle may be an atomic nucleus devoid of electrons, such as an alpha particle. A plasma is a collection of charged particles, atomic nuclei and separated electrons, but can also be a gas containing a significant proportion of charged particles. Charges are arbitrarily labeled as ''positive''(+) or ''negative''(-). Only the existence of two 'types' of charges is known, there isn't anything inherent about positive charges that makes them positive, and the same goes for the negative charge. Examples Positively charged particles * protons and atomic nuclei * positrons (antielectrons) * alpha particles * positive charged pions * cations Negativ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a test charge between the two points. In the International System of Units, the derived unit for voltage is named ''volt''. The voltage between points can be caused by the build-up of electric charge (e.g., a capacitor), and from an electromotive force (e.g., electromagnetic induction in generator, inductors, and transformers). On a macroscopic scale, a potential difference can be caused by electrochemical processes (e.g., cells and batteries), the pressure-induced piezoelectric effect, and the thermoelectric effect. A voltmeter can be used to measure the voltage between two points in a system. Often a common reference potential such as the ground of the system is used as one of the points. A voltage can represent either a source ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
High Frequency
High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one hundred meters). Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or " skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Review Of Scientific Instruments
''Review of Scientific Instruments'' is a monthly peer-reviewed scientific journal published by the American Institute of Physics. Its area of interest is scientific instruments, apparatus, and techniques. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 1.587. References External links * Chemistry journals Physics journals Research methods journals American Institute of Physics academic journals Monthly journals English-language journals {{physics-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Norris Bradbury
Norris Edwin Bradbury (May 30, 1909 – August 20, 1997), was an American physicist who served as director of the Los Alamos National Laboratory for 25 years from 1945 to 1970. He succeeded Robert Oppenheimer, who personally chose Bradbury for the position of director after working closely with him on the Manhattan Project during World War II. Bradbury was in charge of the final assembly of "the Gadget", detonated in July 1945 for the Trinity test. Bradbury took charge at Los Alamos at a difficult time. Staff were leaving in droves, living conditions were poor and there was a possibility that the laboratory would close. He managed to persuade enough staff to stay, and got the University of California to renew the contract to manage the laboratory. He pushed continued development of nuclear weapons, transforming them from laboratory devices to production models. Numerous improvements made them safer, more reliable and easier to store and handle, and made more efficient use o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hadamard Transform
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size . It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh. Definition The Hadamard transform ''H''''m'' is a 2''m'' × 2''m'' matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2''m'' re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ion Mobility Spectrometer
Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detecting drugs and explosives, the technique also has many laboratory analytical applications, including the analysis of both small and large biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitori ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |