HOME
*





Boussinesq T06H18d5
Boussinesq approximation may refer to several modelling concepts – as introduced by Joseph Valentin Boussinesq (1842–1929), a French mathematician and physicist known for advances in fluid dynamics: * Boussinesq approximation (buoyancy) for buoyancy-driven flows for small density differences in the fluid * Boussinesq approximation (water waves) for long waves propagating on the surface of a fluid layer under the action of gravity * Turbulence modeling and eddy viscosity: in modelling the turbulence Reynolds stresses In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum. Definition The velocit ...
, the Boussinesq approximation results in the use of an eddy viscosity concept {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph Valentin Boussinesq
Joseph Valentin Boussinesq (; 13 March 1842 – 19 February 1929) was a French mathematician and physicist who made significant contributions to the theory of hydrodynamics, vibration, light, and heat. Biography From 1872 to 1886, he was appointed professor at Faculty of Sciences of Lille, lecturing differential and integral calculus at Institut industriel du Nord (École centrale de Lille). From 1896 to his retirement in 1918, he was professor of mechanics at Faculty of Sciences of Paris. John Scott Russell experimentally observed solitary waves in 1834 and reported it during the 1844 Meeting of the British Association for the advancement of science. Subsequently, this was developed into the modern physics of solitons. In 1871, Boussinesq published the first mathematical theory to support Russell's experimental observation, and in 1877 introduced the KdV equation. In 1876, Lord Rayleigh published his mathematical theory to support Russell's experimental observation. At th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boussinesq Approximation (buoyancy)
In fluid dynamics, the Boussinesq approximation (, named for Joseph Valentin Boussinesq) is used in the field of buoyancy-driven flow (also known as natural convection). It ignores density differences except where they appear in terms multiplied by , the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two fluids. Sound waves are impossible/neglected when the Boussinesq approximation is used since sound waves move via density variations. Boussinesq flows are common in nature (such as atmospheric fronts, oceanic circulation, katabatic winds), industry ( dense gas dispersion, fume cupboard ventilation), and the built environment (natural ventilation, central heating). The approximation is extremely accurate for many such flows, and makes the mathematics and physics simpler. The approximation The Boussinesq approxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boussinesq Approximation (water Waves)
In fluid dynamics, the Boussinesq approximation for water waves is an approximation valid for weakly non-linear and fairly long waves. The approximation is named after Joseph Boussinesq, who first derived them in response to the observation by John Scott Russell of the wave of translation (also known as solitary wave or soliton). The 1872 paper of Boussinesq introduces the equations now known as the Boussinesq equations. The Boussinesq approximation for water waves takes into account the vertical structure of the horizontal and vertical flow velocity. This results in non-linear partial differential equations, called Boussinesq-type equations, which incorporate frequency dispersion (as opposite to the shallow water equations, which are not frequency-dispersive). In coastal engineering, Boussinesq-type equations are frequently used in computer models for the simulation of water waves in shallow seas and harbours. While the Boussinesq approximation is applicable to fairly long ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turbulence Modeling
Turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real life scenarios, including the flow of blood through the cardiovascular system, the airflow over an aircraft wing, the re-entry of space vehicles, besides others. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows. Closure problem The Navier–Stokes equations govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]