Boolean-valued Function
A Boolean-valued function (sometimes called a predicate or a proposition) is a function of the type f : X → B, where X is an arbitrary set and where B is a Boolean domain, i.e. a generic two-element set, (for example B = ), whose elements are interpreted as logical values, for example, 0 = false and 1 = true, i.e., a single bit of information. In the formal sciences, mathematics, mathematical logic, statistics, and their applied disciplines, a Boolean-valued function may also be referred to as a characteristic function, indicator function, predicate, or proposition. In all of these uses, it is understood that the various terms refer to a mathematical object and not the corresponding semiotic sign or syntactic expression. In formal semantic theories of truth, a truth predicate is a predicate on the sentences of a formal language, interpreted for logic, that formalizes the intuitive concept that is normally expressed by saying that a sentence is true. A truth predicate may have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Predicate (logic)
In logic, a predicate is a symbol which represents a property or a relation. For instance, in the first order formula P(a), the symbol P is a predicate which applies to the individual constant a. Similarly, in the formula R(a,b), R is a predicate which applies to the individual constants a and b. In the semantics of logic, predicates are interpreted as relations. For instance, in a standard semantics for first-order logic, the formula R(a,b) would be true on an interpretation if the entities denoted by a and b stand in the relation denoted by R. Since predicates are non-logical symbols, they can denote different relations depending on the interpretation used to interpret them. While first-order logic only includes predicates which apply to individual constants, other logics may allow predicates which apply to other predicates. Predicates in different systems * In propositional logic, atomic formulas are sometimes regarded as zero-place predicates In a sense, these are nullar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sentence (mathematical Logic)
:''This article is a technical mathematical article in the area of predicate logic. For the ordinary English language meaning see Sentence (linguistics), for a less technical introductory article see Statement (logic).'' In mathematical logic, a sentence (or closed formula)Edgar Morscher, "Logical Truth and Logical Form", ''Grazer Philosophische Studien'' 82(1), pp. 77–90. of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that ''must'' be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: As the free variables of a (general) formula can range over several values, the truth value of such a formula may vary. Sentences without any logical connectives or quantifiers in them are known as atomic sentences; by analogy to atomic formula. Sentences are then built up out of atomic formulas by applying con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zvi Kohavi
Zvi ( he, צְבִי and , ''Tzvi'', Ṣvi, "gazelle") is a Jewish masculine given name. Notable people with this name include: * Zvi Aharoni (1921–2012), Israeli Mossad agent * Zvi Arad (1942–2018), Israeli mathematician, acting president of Bar-Ilan University, president of Netanya Academic College * Zvi Ben-Avraham (born 1941), Israeli geophysicist * Zvi Bodie, American academic * Zvi Hirsch Chajes (1805–1855), Orthodox Polish rabbi * Zvi Chalamish, Israeli financier * Zvi Elpeleg (1926–2015), Israeli academic * Zvi Galil (born 1947), Israeli computer scientist, mathematician, and President of Tel Aviv University * Zvika Greengold (born 1952), Israeli officer during the Yom Kippur War, awarded the Medal of Valor * Zvi Griliches (1930–1999), Jewish-American economist * Zvi Hirsch Grodzinsky (born 1857), American rabbi * Zvi Elimelech Halberstam (born 1952), Israeli rebbe * Zvi Hecker (born 1931), Israeli architect * Zvi Heifetz (born 1956), Israeli diplomat * Zvi Hende ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frank Markham Brown
Frank or Franks may refer to: People * Frank (given name) * Frank (surname) * Franks (surname) * Franks, a medieval Germanic people * Frank, a term in the Muslim world for all western Europeans, particularly during the Crusades - see Farang Currency * Liechtenstein franc or frank, the currency of Liechtenstein since 1920 * Swiss franc or frank, the currency of Switzerland since 1850 * Westphalian frank, currency of the Kingdom of Westphalia between 1808 and 1813 * The currencies of the German-speaking cantons of Switzerland (1803–1814): ** Appenzell frank ** Argovia frank ** Basel frank ** Berne frank ** Fribourg frank ** Glarus frank ** Graubünden frank ** Luzern frank ** Schaffhausen frank ** Schwyz frank ** Solothurn frank ** St. Gallen frank ** Thurgau frank ** Unterwalden frank ** Uri frank ** Zürich frank Places * Frank, Alberta, Canada, an urban community, formerly a village * Franks, Illinois, United States, an unincorporated community * Franks, Missouri, United S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a non-negative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a ''vectorial'' or ''vector-valued'' Boolean function (an S-box in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every k-ary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formulas are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finitary Boolean Function
In mathematics and logic, an operation is finitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values. In standard mathematics, an operation is finitary by definition. Therefore these terms are usually only used in the context of infinitary logic. Finitary argument A finitary argument is one which can be translated into a finite set of symbolic propositions starting from a finiteThe number of axioms ''referenced'' in the argument will necessarily be finite since the proof is finite, but the number of axioms from which these are ''chosen'' is infinite when the system has axiom schemes, e.g. the axiom schemes of propositional calculus. set of axioms. In other words, it is a proof (including all assumptions) that can be written on a large enough sheet of paper. By contrast, infinitary logic studies logics that allow infinitely long statements and proofs. In such a logic, one ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proposition
In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, " meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the non-linguistic bearer of truth or falsity which makes any sentence that expresses it either true or false. While the term "proposition" may sometimes be used in everyday language to refer to a linguistic statement which can be either true or false, the technical philosophical term, which differs from the mathematical usage, refers exclusively to the non-linguistic meaning behind the statement. The term is often used very broadly and can also refer to various related concepts, both in the history of philosophy and in contemporary analytic philosophy. It can generally be used to refer to some or all of the following: The primary bearers of truth values (such as "true" and "false"); the objects of belief and other propositional attitudes (i.e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . Nota ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic Minimization
Logic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one. The smaller circuit with the same function is cheaper, takes less space, consumes less power, have shorter latency, and minimizes risks of unexpected cross-talk, hazard of delayed signal processing, and other issues present at the nano-scale level of metallic structures on an integrated circuit. In terms of Boolean algebra, the optimization of a complex boolean expression is a process of finding a simpler one, which would upon evaluation ultimately produce the same results as the original on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truth Table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid. A truth table has one column for each input variable (for example, P and Q), and one final column showing all of the possible results of the logical operation that the table represents (for example, P XOR Q). Each row of the truth table contains one possible configuration of the input variables (for instance, P=true Q=false), and the result of the operation for those values. See the examples below for further clarification. Ludwig Wittgenstein is generally credited with inventing and popularizing the truth table ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Calculus
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Explanation Logical connectives are found in natural languages. In English for example, some examples are "and" (logical conjunction, conjunction), "or" (lo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Logic
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses Logical connective, logical operators such as Logical conjunction, conjunction (''and'') denoted as ∧, Logical disjunction, disjunction (''or'') denoted as ∨, and the negation (''not'') denoted as ¬. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction and division. So Boolean algebra is a formal way of describing logical operations, in the same way that elementary algebra describes numerical operations. Boolean algebra was introduced by George Boole in his first book ''The Mathematical Analysis of Logic'' (1847), and set forth more fully in his ''The Laws of Thought, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |