Book (graph Theory)
In graph theory, a book graph (often written B_p ) may be any of several kinds of graph formed by multiple cycles sharing an edge. Variations One kind, which may be called a quadrilateral book, consists of ''p'' quadrilaterals sharing a common edge (known as the "spine" or "base" of the book). That is, it is a Cartesian product of a star and a single edge. The 7-page book graph of this type provides an example of a graph with no harmonious labeling. A second type, which might be called a triangular book, is the complete tripartite graph ''K''1,1,''p''. It is a graph consisting of p triangles sharing a common edge. A book of this type is a split graph. This graph has also been called a K_e(2,p) or a thagomizer graph (after thagomizers, the spiked tails of stegosaurian dinosaurs, because of their pointy appearance in certain drawings) and their graphic matroids have been called thagomizer matroids. Triangular books form one of the key building blocks of line perfect graphs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Book Sample
Graph may refer to: Mathematics * Graph (discrete mathematics), a structure made of vertices and edges ** Graph theory, the study of such graphs and their properties * Graph (topology), a topological space resembling a graph in the sense of discrete mathematics *Graph of a function * Graph of a relation *Graph paper *Chart, a means of representing data (also called a graph) Computing *Graph (abstract data type), an abstract data type representing relations or connections * graph (Unix), Unix command-line utility * Conceptual graph, a model for knowledge representation and reasoning Other uses * HMS ''Graph'', a submarine of the UK Royal Navy See also * Complex network * Graf * Graff (other) * Graph database * Grapheme, in linguistics * Graphemics * Graphic (other) *-graphy (suffix from the Greek for "describe," "write" or "draw") * List of information graphics software *Statistical graphics Statistical graphics, also known as statistical graphical technique ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thagomizer
A thagomizer () is the distinctive arrangement of four spikes on the tails of Stegosauridae, stegosaurine dinosaurs. These spikes are believed to have been a defensive measure against predators.Carpenter, K., Sanders, F., McWhinney, L., and Wood, L. 2005. Evidence for predator-prey relationships: Example for ''Allosaurus'' and ''Stegosaurus''. Pp. 325-350 in Carpenter, K. (ed.) The Carnivorous Dinosaurs. Indiana University Press, Bloomington. The arrangement of spikes originally had no distinct name. Cartoonist Gary Larson invented the name "thagomizer" in 1982 as a joke in his comic strip ''The Far Side, Far Side'', and it was gradually adopted as an informal term sometimes used within scientific circles, research, and education. Etymology The term ''thagomizer'' was coined by Gary Larson in jest. In a 1982 ''The Far Side'' comic, a group of caveman, cavemen are taught by a caveman lecturer that the spikes on a stegosaur's tail were named "after the late Thag Simmons". The te ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Graph Theory
The ''Journal of Graph Theory'' is a peer-reviewed mathematics journal specializing in graph theory and related areas, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. It is published by John Wiley & Sons. The journal was established in 1977 by Frank Harary.Frank Harary a biographical sketch at the ACM site The are [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complement Graph
In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there.. The complement is not the set complement of the graph; only the edges are complemented. Definition Let be a simple graph and let consist of all 2-element subsets of . Then is the complement of , where is the relative complement of in . For directed graphs, the complement can be defined in the same way, as a directed graph on the same vertex set, using the set of all 2-element ordered pairs of in place of the set in the formula above. In terms of the adjacency matrix ''A'' of the graph, if ''Q'' is the adjacency matrix of the complete graph of the same number of vertices (i.e. all entries are unity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ramsey Number
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let and be any two positive integers. Ramsey's theorem states that there exists a least positive integer for which every blue-red edge colouring of the complete graph on vertices contains a blue clique on vertices or a red clique on vertices. (Here signifies an integer that depends on both and .) Ramsey's theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. This initiated the combinatorial theory now called Ramsey theory, that seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In this application it is a question of the existence of ''monochromatic subsets'', that is, subsets of connected edges of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTA Editorial board of JCTB Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line Perfect Graph
In graph theory, a line perfect graph is a graph whose line graph is a perfect graph. Equivalently, these are the graphs in which every odd-length simple cycle is a triangle. A graph is line perfect if and only if each of its biconnected components is a bipartite graph, the complete graph , or a triangular book . Because these three types of biconnected component are all perfect graphs themselves, every line perfect graph is itself perfect. By similar reasoning, every line perfect graph is a parity graph, a Meyniel graph, and a perfectly orderable graph. Line perfect graphs generalize the bipartite graphs, and share with them the properties that the maximum matching and minimum vertex cover have the same size, and that the chromatic index equals the maximum degree. See also * Strangulated graph, a graph in which every peripheral cycle is a triangle References {{reflist, refs= {{citation , last = de Werra , first = D. , doi = 10.1007/BF01609025 , issue = 2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graphic Matroid
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs. Definition A matroid may be defined as a family of finite sets (called the "independent sets" of the matroid) that is closed under subsets and that satisfies the "exchange property": if sets A and B are both independent, and A is larger than B, then there is an element x\in A\setminus B such that B\cup\ remains independent. If G is an undirected graph, and F is the family of sets of edges that form forests in G, then F is clearly closed under subsets (re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stegosauria
Stegosauria is a group of herbivorous ornithischian dinosaurs that lived during the Jurassic and early Cretaceous periods. Stegosaurian fossils have been found mostly in the Northern Hemisphere, predominantly in what is now North America, Europe, Africa, South America and Asia. Their geographical origins are unclear; the earliest unequivocal stegosaurian, ''Huayangosaurus taibaii'', lived in China. Stegosaurians were armored dinosaurs (thyreophorans). Originally, they did not differ much from more primitive members of that group, being small, low-slung, running animals protected by armored scutes. An early evolutionary innovation was the development of spikes as defensive weapons. Later species, belonging to a subgroup called the Stegosauridae, became larger, and developed long hindlimbs that no longer allowed them to run. This increased the importance of active defence by the thagomizer, which could ward off even large predators because the tail was in a higher position, pointing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Split Graph
In graph theory, a branch of mathematics, a split graph is a graph in which the vertices can be partitioned into a clique and an independent set. Split graphs were first studied by , and independently introduced by . A split graph may have more than one partition into a clique and an independent set; for instance, the path is a split graph, the vertices of which can be partitioned in three different ways: #the clique and the independent set #the clique and the independent set #the clique and the independent set Split graphs can be characterized in terms of their forbidden induced subgraphs: a graph is split if and only if no induced subgraph is a cycle on four or five vertices, or a pair of disjoint edges (the complement of a 4-cycle). Relation to other graph families From the definition, split graphs are clearly closed under complementation. Another characterization of split graphs involves complementation: they are chordal graphs the complements of which are also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |