Bloch–Siegert Shift
   HOME
*



picture info

Bloch–Siegert Shift
The Bloch–Siegert shift is a phenomenon in quantum physics that becomes important for driven two-level systems when the driving gets strong (e.g. atoms driven by a strong laser drive or nuclear spins in NMR, driven by a strong oscillating magnetic field). When the rotating wave approximation (RWA) is invoked, the resonance between the driving field and a pseudospin occurs when the field frequency \omega is identical to the spin's transition frequency \omega_0. The RWA is, however, an approximation. In 1940 Felix Bloch and Arnold Siegert showed that the dropped parts oscillating rapidly can give rise to a shift in the true resonance frequency of the dipoles. Rotating wave approximation In RWA, when the perturbation to the two level system is H_ = \frac \cos, a linearly polarized field is considered as a superposition of two circularly polarized fields of the same amplitude rotating in opposite directions with frequencies \omega, -\omega. Then, in the rotating frame(\omega), we c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotating Pot Lid Demonstrating Blocksieger Shift
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional object has an infinite number of possible central axes and rotational directions. If the rotation axis passes internally through the body's own center of mass, then the body is said to be ''autorotating'' or ''spinning'', and the surface intersection of the axis can be called a '' pole''. A rotation around a completely external axis, e.g. the planet Earth around the Sun, is called ''revolving'' or '' orbiting'', typically when it is produced by gravity, and the ends of the rotation axis can be called the '' orbital poles''. Mathematics Mathematically, a rotation is a rigid body movement which, unlike a translation, keeps a point fixed. This definition applies to rotations within both two and three dimensions (in a plane and in s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotating Wave Approximation
The rotating-wave approximation is an approximation used in atom optics and magnetic resonance. In this approximation, terms in a Hamiltonian that oscillate rapidly are neglected. This is a valid approximation when the applied electromagnetic radiation is near resonance with an atomic transition, and the intensity is low. Explicitly, terms in the Hamiltonians that oscillate with frequencies \omega_L + \omega_0 are neglected, while terms that oscillate with frequencies \omega_L - \omega_0 are kept, where \omega_L is the light frequency, and \omega_0 is a transition frequency. The name of the approximation stems from the form of the Hamiltonian in the interaction picture, as shown below. By switching to this picture the evolution of an atom due to the corresponding atomic Hamiltonian is absorbed into the system ket, leaving only the evolution due to the interaction of the atom with the light field to consider. It is in this picture that the rapidly oscillating terms mentioned previ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Felix Bloch
Felix Bloch (23 October 1905 – 10 September 1983) was a Swiss-American physicist and Nobel physics laureate who worked mainly in the U.S. He and Edward Mills Purcell were awarded the 1952 Nobel Prize for Physics for "their development of new ways and methods for nuclear magnetic precision measurements."Sohlman, M (Ed.) ''Nobel Foundation directory 2003.'' Vastervik, Sweden: AB CO Ekblad; 2003. In 1954–1955, he served for one year as the first Director-General of CERN. Felix Bloch made fundamental theoretical contributions to the understanding of ferromagnetism and electron behavior in crystal lattices. He is also considered one of the developers of nuclear magnetic resonance. Biography Early life, education, and family Bloch was born in Zürich, Switzerland to Jewish parents Gustav and Agnes Bloch. Gustav Bloch, his father, was financially unable to attend University and worked as a wholesale grain dealer in Zürich. Gustav moved to Zürich in 1890 to become a Swiss c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rabi Frequency
The Rabi frequency is the frequency at which the probability amplitudes of two atomic energy levels fluctuate in an oscillating electromagnetic field. It is proportional to the Transition Dipole Moment of the two levels and to the amplitude (''not'' intensity) of the Electromagnetic field. Population transfer between the levels of such a 2-level system illuminated with light exactly resonant with the difference in energy between the two levels will occur at the Rabi frequency; when the incident light is detuned from this energy difference (detuned from resonance) then the population transfer occurs at the generalized Rabi frequency. The Rabi frequency is a semiclassical concept since it treats the atom as an object with quantized energy levels and the electromagnetic field as a continuous wave. In the context of a nuclear magnetic resonance experiment, the Rabi frequency is the nutation frequency of a sample's net nuclear magnetization vector about a radio-frequency field. (Not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Light Dressed State
In the fields of atomic, molecular, and optical science, the term light dressed state refers to a quantum state of an atomic or molecular system interacting with a laser light in terms of the Floquet picture, i.e. roughly like an atom or a molecule plus a photon. The Floquet picture is based on the Floquet theorem in differential equations with periodic coefficients. Mathematical formulation The Hamiltonian of a system of charged particles interacting with a laser light can be expressed as : H=\sum_i \frac\left mathbf_i-\frac\mathbf\right2 +V(\), \ \ \ \ \ \ \ \ \ \ \ (1) where \mathbf is the vector potential of the electromagnetic field of the laser; \mathbf is periodic in time as \mathbf(t+T)=\mathbf(t). The position and momentum of the i\,-th particle are denoted as \mathbf_i \, and \mathbf_i \,, respectively, while its mass and charge are symbolized as m_i \, and z_i \,, respectively. c \, is the speed of light. By virtue of this time-periodicity of the laser field, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]