Bloch Group
   HOME
*





Bloch Group
In mathematics, the Bloch group is a cohomology group of the Bloch–Suslin complex, named after Spencer Bloch and Andrei Suslin. It is closely related to polylogarithm, hyperbolic geometry and algebraic K-theory. Bloch–Wigner function The dilogarithm function is the function defined by the power series : \operatorname_2(z) = \sum_^\infty . It can be extended by analytic continuation, where the path of integration avoids the cut from 1 to +∞ : \operatorname_2 (z) = -\int_0^z \,\mathrmt. The Bloch–Wigner function is related to dilogarithm function by :\operatorname_2 (z) = \operatorname (\operatorname_2 (z) )+\arg(1-z)\log, z, , if z \in \mathbb \setminus \. This function enjoys several remarkable properties, e.g. *\operatorname_2 (z) is real analytic on \mathbb \setminus \. *\operatorname_2 (z) = \operatorname_2 \left(1-\frac\right) = \operatorname_2 \left(\frac\right) = - \operatorname_2 \left(\frac\right) = -\operatorname_2 (1-z) = -\operatorname_2 \left(\frac\rig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cohomology Group
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monomial Matrices
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, x^2yz^3=xxyzzz is a monomial. The constant 1 is a monomial, being equal to the empty product and to x^0 for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power x^n of x, with n a positive integer. If several variables are considered, say, x, y, z, then each can be given an exponent, so that any monomial is of the form x^a y^b z^c with a,b,c non-negative integers (taking note that any exponent 0 makes the corresponding factor equal to 1). # A monomial is a monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A monomial in the first sense is a specia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Don Zagier
Don Bernard Zagier (born 29 June 1951) is an American-German mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany. He was a professor at the ''Collège de France'' in Paris from 2006 to 2014. Since October 2014, he is also a Distinguished Staff Associate at the International Centre for Theoretical Physics (ICTP). Background Zagier was born in Heidelberg, West Germany. His mother was a psychiatrist, and his father was the dean of instruction at the American College of Switzerland. His father held five different citizenships, and he spent his youth living in many different countries. After finishing high school (at age 13) and attending Winchester College for a year, he studied for three years at MIT, completing his bachelor's and master's degrees and being named a Putnam Fellow in 1967 at the age of 16. He then wrote a doctoral dissertation on characteristic classes under Friedrich ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alexander Goncharov
Alexander B. Goncharov (born April 7, 1960) is a Soviet American mathematician and the Philip Schuyler Beebe Professor of Mathematics at Yale University. He won the EMS Prize in 1992. Goncharov won a gold medal at the International Mathematical Olympiad in 1976. He attained his doctorate at Lomonosov Moscow State University in 1987, under supervision of Israel Gelfand with thesis ''Generalized conformal structures on manifolds''. Goncharov was an Invited Speaker at the 1994 International Congress of Mathematicians and gave a talk ''Polylogarithms in arithmetic and geometry''. In 2019, Goncharov was appointed the Philip Schuyler Beebe Professor of Mathematics at Yale University, as well as the Gretchen and Barry Mazur Chair at the Institut des hautes études scientifiques. Selected publications * * (with A. M. Levin) * * (with P. Deligne) * (with V. V. Fock) * (with V. V. Fock) * (with H. Gangl, A. Levin) * (with V. V. Fock) * (with R. Kenyon) * (with T. Dimofte, M. Gab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mostow Rigidity Theorem
Mostow may refer to: People * George Mostow (1923–2017), American mathematician ** Mostow rigidity theorem * Jonathan Mostow Jonathan Mostow (born November 28, 1961) is an American film director, screenwriter, and producer. He has directed films such as ''Breakdown (1997 film), Breakdown'', ''U-571 (film), U-571'', ''Terminator 3: Rise of the Machines'', and ''Surroga ... (born 1961), American movie and television director Places * Mostów, a village in Poland {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Volume
In the mathematical field of knot theory, the hyperbolic volume of a hyperbolic link is the volume of the link's complement with respect to its complete hyperbolic metric. The volume is necessarily a finite real number, and is a topological invariant of the link. As a link invariant, it was first studied by William Thurston in connection with his geometrization conjecture. Knot and link invariant A hyperbolic link is a link in the 3-sphere whose complement (the space formed by removing the link from the 3-sphere) can be given a complete Riemannian metric of constant negative curvature, giving it the structure of a hyperbolic 3-manifold, a quotient of hyperbolic space by a group acting freely and discontinuously on it. The components of the link will become cusps of the 3-manifold, and the manifold itself will have finite volume. By Mostow rigidity, when a link complement has a hyperbolic structure, this structure is uniquely determined, and any geometric invariants of the stru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to differentiate it from complex hyperbolic spaces, quaternionic hyperbolic spaces and the octononic hyperbolic plane which are the other symmetric spaces of negative curvature. Hyperbolic space serves as the prototype of a Gromov hyperbolic space which is a far-reachin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Milnor K-theory
In mathematics, Milnor K-theory is an algebraic invariant (denoted K_*(F) for a field F) defined by as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebraic and give some insight about its relationships with other parts of mathematics, such as Galois cohomology and the Grothendieck–Witt ring of quadratic forms. Before Milnor K-theory was defined, there existed ad-hoc definitions for K_1 and K_2. Fortunately, it can be shown Milnor is a part of algebraic , which in general is the easiest part to compute. Definition Motivation After the definition of the Grothendieck group K(R) of a commutative ring, it was expected there should be an infinite set of invariants K_i(R) called higher groups, from the fact there exists a short exact sequence :K(R,I) \to K(R) \to K(R/I) \to 0 which should have a continuation by a long exact sequence. Note the group on the left is relative . This led to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plus-construction
In mathematics, the plus construction is a method for simplifying the fundamental group of a space without changing its homology and cohomology groups. Explicitly, if X is a based connected CW complex and P is a perfect normal subgroup of \pi_1(X) then a map f\colon X \to Y is called a +-construction relative to P if f induces an isomorphism on homology, and P is the kernel of \pi_1(X) \to \pi_1(Y).Charles Weibel, ''An introduction to algebraic K-theory'' IV, Definition 1.4.1 The plus construction was introduced by , and was used by Daniel Quillen to define algebraic K-theory. Given a perfect normal subgroup of the fundamental group of a connected CW complex X, attach two-cells along loops in X whose images in the fundamental group generate the subgroup. This operation generally changes the homology of the space, but these changes can be reversed by the addition of three-cells. The most common application of the plus construction is in algebraic K-theory. If R is a unital ring, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel Quillen
Daniel Gray "Dan" Quillen (June 22, 1940 – April 30, 2011) was an American mathematician. He is known for being the "prime architect" of higher algebraic ''K''-theory, for which he was awarded the Cole Prize in 1975 and the Fields Medal in 1978. From 1984 to 2006, he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. Education and career Quillen was born in Orange, New Jersey, and attended Newark Academy. He entered Harvard University, where he earned both his AB, in 1961, and his PhD in 1964; the latter completed under the supervision of Raoul Bott, with a thesis in partial differential equations. He was a Putnam Fellow in 1959. Quillen obtained a position at the Massachusetts Institute of Technology after completing his doctorate. He also spent a number of years at several other universities. He visited France twice: first as a Sloan Fellow in Paris, during the academic year 1968–69, where he was greatly influenced by Grothendieck, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matsumoto's Theorem (K-theory)
Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the ''K''-groups of the integers. ''K''-theory was discovered in the late 1950s by Alexander Grothendieck in his study of intersection theory on algebraic varieties. In the modern language, Grothendieck defined only ''K''0, the zeroth ''K''-group, but even this single group has plenty of applications, such as the Grothendieck–Riemann–Roch theorem. Intersection theory is still a motivating force in the development of (higher) algebraic ''K''-theory through its links with motivic cohomology and specifically Chow groups. The subject also includes classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spencer Bloch
Spencer Janney Bloch (born May 22, 1944; New York City) is an American mathematician known for his contributions to algebraic geometry and algebraic ''K''-theory. Bloch is a R. M. Hutchins Distinguished Service Professor Emeritus in the Department of Mathematics of the University of Chicago. He is a member of the U.S. National Academy of Sciences and a Fellow of the American Academy of Arts and SciencesScholars, visiting faculty, leaders represent Chicago as AAAS fellows
The University of Chicago Chronicle, April 30, 2009, Vol. 28 No. 15. Accessed January 12, 2010
and of the . At the