Berman–Hartmanis Conjecture
In structural complexity theory, the Berman–Hartmanis conjecture is an unsolved conjecture named after Leonard C. Berman and Juris Hartmanis that states that all NP-complete languages look alike, in the sense that they can be related to each other by polynomial time isomorphisms. Statement An isomorphism between formal languages ''L''1 and ''L''2 is a bijective map ''f'' from strings in the alphabet of ''L''1 to strings in the alphabet of ''L''2, with the property that a string ''x'' belongs to ''L''1 if and only if ''f''(''x'') belongs to ''L''2. It is a polynomial time isomorphism (or ''p''-isomorphism for short) if both ''f'' and its inverse function can be computed in an amount of time polynomial in the lengths of their arguments. observed that all languages known at that time to be NP-complete were ''p''-isomorphic. More strongly, they observed that all then-known NP-complete languages were ''paddable'', and they proved (analogously to the Myhill isomorphism theorem) that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structural Complexity Theory
In computational complexity theory of computer science, the structural complexity theory or simply structural complexity is the study of complexity classes, rather than computational complexity of individual problems and algorithms. It involves the research of both internal structures of various complexity classes and the relations between different complexity classes.Juris Hartmanis, "New Developments in Structural Complexity Theory" (invited lecture), Proc. 15th International Colloquium on Automata, Languages and Programming, 1988 (ICALP 88), ''Lecture Notes in Computer Science'', vol. 317 (1988), pp. 271-286. History The theory has emerged as a result of (still failing) attempts to resolve the first and still the most important question of this kind, the P = NP problem. Most of the research is done basing on the assumption of P not being equal to NP and on a more far-reaching conjecture that the polynomial time hierarchy of complexity classes is infinite. Important results T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mahaney's Theorem
Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reduction In computability theory, a Turing reduction from a decision problem A to a decision problem B is an oracle machine which decides problem A given an oracle for B (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to s ...s, then the polynomial-time hierarchy collapses to \Delta^P_2. Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set. References {{compsci-stub Computational complexity theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structural Complexity Theory
In computational complexity theory of computer science, the structural complexity theory or simply structural complexity is the study of complexity classes, rather than computational complexity of individual problems and algorithms. It involves the research of both internal structures of various complexity classes and the relations between different complexity classes.Juris Hartmanis, "New Developments in Structural Complexity Theory" (invited lecture), Proc. 15th International Colloquium on Automata, Languages and Programming, 1988 (ICALP 88), ''Lecture Notes in Computer Science'', vol. 317 (1988), pp. 271-286. History The theory has emerged as a result of (still failing) attempts to resolve the first and still the most important question of this kind, the P = NP problem. Most of the research is done basing on the assumption of P not being equal to NP and on a more far-reaching conjecture that the polynomial time hierarchy of complexity classes is infinite. Important results T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cryptographic Hash Function
A cryptographic hash function (CHF) is a hash algorithm (a map of an arbitrary binary string to a binary string with fixed size of n bits) that has special properties desirable for cryptography: * the probability of a particular n-bit output result (hash value) for a random input string ("message") is 2^ (like for any good hash), so the hash value can be used as a representative of the message; * finding an input string that matches a given hash value (a ''pre-image'') is unfeasible, unless the value is selected from a known pre-calculated dictionary (" rainbow table"). The ''resistance'' to such search is quantified as security strength, a cryptographic hash with n bits of hash value is expected to have a ''preimage resistance'' strength of n bits. A ''second preimage'' resistance strength, with the same expectations, refers to a similar problem of finding a second message that matches the given hash value when one message is already known; * finding any pair of different messa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The ACM
The ''Journal of the ACM'' is a peer-reviewed scientific journal covering computer science in general, especially theoretical aspects. It is an official journal of the Association for Computing Machinery. Its current editor-in-chief is Venkatesan Guruswami. The journal was established in 1954 and "computer scientists universally hold the ''Journal of the ACM'' in high esteem". See also * ''Communications of the ACM ''Communications of the ACM'' is the monthly journal of the Association for Computing Machinery (ACM). It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with ...'' References External links * Publications established in 1954 Computer science journals Association for Computing Machinery academic journals Bimonthly journals English-language journals {{compu-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Oracle
In cryptography, a random oracle is an oracle (a theoretical black box) that responds to every ''unique query'' with a (truly) random response chosen uniformly from its output domain. If a query is repeated, it responds the same way every time that query is submitted. Stated differently, a random oracle is a mathematical function chosen uniformly at random, that is, a function mapping each possible query to a (fixed) random response from its output domain. Random oracles as a mathematical abstraction were first used in rigorous cryptographic proofs in the 1993 publication by Mihir Bellare and Phillip Rogaway (1993). They are typically used when the proof cannot be carried out using weaker assumptions on the cryptographic hash function. A system that is proven secure when every hash function is replaced by a random oracle is described as being secure in the random oracle model, as opposed to secure in the standard model of cryptography. Applications Random oracles are typicall ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Computer Science (journal)
''Theoretical Computer Science'' (TCS) is a computer science journal published by Elsevier, started in 1975 and covering theoretical computer science. The journal publishes 52 issues a year. It is abstracted and indexed by Scopus and the Science Citation Index. According to the Journal Citation Reports, its 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... is 0.827. References Computer science journals Elsevier academic journals Publications established in 1975 {{comp-sci-theory-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Creativity
In computational complexity theory, polynomial creativity is a theory analogous to the theory of creative sets in recursion theory and mathematical logic. The are a family of formal languages in the complexity class NP whose complements certifiably do not have nondeterministic recognition algorithms. It is generally believed that NP is unequal to co-NP (the class of complements of languages in NP), which would imply more strongly that the complements of all NP-complete languages do not have polynomial-time nondeterministic recognition algorithms. However, for the sets, the lack of a (more restricted) recognition algorithm can be proven, whereas a proof that remains elusive. The sets are conjectured to form counterexamples to the Berman–Hartmanis conjecture on isomorphism of NP-complete sets. It is NP-complete to test whether an input string belongs to any one of these languages, but no polynomial time isomorphisms between all such languages and other NP-complete languages are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oracle Machine
In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to solve certain problems in a single operation. The problem can be of any complexity class. Even undecidable problems, such as the halting problem, can be used. Oracles An oracle machine can be conceived as a Turing machine connected to an oracle. The oracle, in this context, is an entity capable of solving some problem, which for example may be a decision problem or a function problem. The problem does not have to be computable; the oracle is not assumed to be a Turing machine or computer program. The oracle is simply a "black box" that is able to produce a solution for any instance of a given computational problem: * A decision problem is represented as a set ''A'' of natural numbers (or strings). An instance of the problem is an arbitrary natural number (or string ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P/poly
In computational complexity theory, P/poly is a complexity class representing problems that can be solved by small circuits. More precisely, it is the set of formal languages that have polynomial-size circuit families. It can also be defined equivalently in terms of Turing machines with advice, extra information supplied to the Turing machine along with its input, that may depend on the input length but not on the input itself. In this formulation, P/poly is the class of decision problems that can be solved by a polynomial-time Turing machine with advice strings of length polynomial in the input size. These two different definitions make P/poly central to circuit complexity and non-uniform complexity. For example, the popular Miller–Rabin primality test can be formulated as a P/poly algorithm: the "advice" is a list of candidate values to test. It is possible to precompute a list of O(n) values such that every composite n-bit number will be certain to have a witness a in the list ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
One-way Function
In computer science, a one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input. Here, "easy" and "hard" are to be understood in the sense of computational complexity theory, specifically the theory of polynomial time problems. Not being one-to-one is not considered sufficient for a function to be called one-way (see Theoretical definition, below). The existence of such one-way functions is still an open conjecture. Their existence would prove that the complexity classes P and NP are not equal, thus resolving the foremost unsolved question of theoretical computer science.Oded Goldreich (2001). Foundations of Cryptography: Volume 1, Basic Tools,draft availablefrom author's site). Cambridge University Press. . (see als The converse is not known to be true, i.e. the existence of a proof that P≠NP would not directly imply the existence of one-way functions. In applied contexts, the terms "easy" and "hard" are usu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symposium On Theory Of Computing
The Annual ACM Symposium on Theory of Computing (STOC) is an academic conference in the field of theoretical computer science. STOC has been organized annually since 1969, typically in May or June; the conference is sponsored by the Association for Computing Machinery special interest group SIGACT. Acceptance rate of STOC, averaged from 1970 to 2012, is 31%, with the rate of 29% in 2012. As writes, STOC and its annual IEEE counterpart FOCS (the Symposium on Foundations of Computer Science) are considered the two top conferences in theoretical computer science, considered broadly: they “are forums for some of the best work throughout theory of computing that promote breadth among theory of computing researchers and help to keep the community together.” includes regular attendance at STOC and FOCS as one of several defining characteristics of theoretical computer scientists. Awards The Gödel Prize for outstanding papers in theoretical computer science is presented alternately a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |