Bell–Evans–Polanyi Principle
In physical chemistry, the Evans–Polanyi principle (also referred to as the Bell–Evans–Polanyi principle, Brønsted–Evans–Polanyi principle, or Evans–Polanyi–Semenov principle) observes that the difference in activation energy between two reactions of the same family is proportional to the difference of their enthalpy of reaction. This relationship can be expressed as : E_\text = E_0 + \alpha \Delta H, where : E_0 is the activation energy of a reference reaction of the same class, : \Delta H is the enthalpy of reaction, : \alpha characterizes the position of the transition state along the reaction coordinate (such that 0 \leq \alpha \leq 1). The Evans–Polanyi model is a linear energy relationship that serves as an efficient way to calculate activation energy of many reactions within a distinct family. The activation energy may be used to characterize the kinetic rate parameter of a given reaction through application of the Arrhenius equation. The Evans–Pola ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physical Chemistry
Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria. Physical chemistry, in contrast to chemical physics, is predominantly (but not always) a supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular or atomic structure alone (for example, chemical equilibrium and colloids). Some of the relationships that physical chemistry strives to understand include the effects of: # Intermolecular forces that act upon the physical properties of materials ( plasticity, tensile strength, surface tension in liquids). # Reaction kinetics on the rate of a reaction. # The identity of ions and the electrical conductivity of materials. # Surface science and electrochemistry of cell m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Activation Energy
In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. The activation energy (''E''a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). Activation energy can be thought of as a magnitude of the potential barrier (sometimes called the energy barrier) separating minima of the potential energy surface pertaining to the initial and final thermodynamic state. For a chemical reaction to proceed at a reasonable rate, the temperature of the system should be high enough such that there exists an appreciable number of molecules with translational energy equal to or greater than the activation energy. The term "activation energy" was introduced in 1889 by the Swedish scientist Svante Arrhenius. Other uses Although less commonly used, activation energy also applies to nuclear reactions and various other physical phenomena. Temperature ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Enthalpy Of Reaction
The standard enthalpy of reaction (denoted \Delta H_^\ominus) for a chemical reaction is the difference between total product and total reactant molar enthalpies, calculated for substances in their standard states. The value can be approximately interpreted in terms of the total of the chemical bond energies for bonds broken and bonds formed. For a generic chemical reaction :\nu_ \text + \nu_ \text ~+ ~... \rightarrow \nu_ \text + \nu_ \text ~+ ~... the standard enthalpy of reaction \Delta H_^\ominus is related to the standard enthalpy of formation \Delta_ H^\ominus values of the reactants and products by the following equation: : \Delta H_^\ominus = \sum_ \nu_p\Delta_ H_^ - \sum_ \nu_r\Delta_ H_^ In this equation, \nu_i are the stoichiometric coefficients of each product and reactant. The standard enthalpy of formation, which has been determined for a vast number of substances, is the change of enthalpy during the formation of 1 mole of the substance from its constitu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transition State
In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked with the double dagger (‡) symbol. As an example, the transition state shown below occurs during the SN2 reaction of bromoethane with a hydroxide anion: The activated complex of a reaction can refer to either the transition state or to other states along the reaction coordinate between reactants and products, especially those close to the transition state. Peter Atkins and Julio de Paula, ''Physical Chemistry'' (8th ed., W.H. Freeman 2006), p.809 According to the transition state theory, once the reactants have passed through the transition state configuration, they always continue to form products. History of concept The concept of a transition state has been important in many theories of the rates at which chemical re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reaction Coordinate
In chemistry, a reaction coordinate is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway. Where possible it is usually a geometric parameter that changes during the conversion of one or more molecular entity, molecular entities, such as bond length or bond angle. For example, in the homolysis (chemistry), homolytic dissociation of molecular hydrogen, an apt choice would be the coordinate corresponding to the bond length. Non-geometric parameters such as Bond order#Non-integer bond orders, bond order are also used, but such direct representation of the reaction process can be difficult, especially for more complex reactions. In computer simulations collective variables are employed for a target-oriented sampling approach. Plain simulations fail to capture so called rare events, because they are not feasible to occur in realistic computation times. This often stems from to high energy barriers separating the reactants from products, or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free-energy Relationship
In physical organic chemistry, a free-energy relationship or Gibbs energy relation relates the logarithm of a reaction rate constant or equilibrium constant for one series of chemical reactions with the logarithm of the rate or equilibrium constant for a related series of reactions. Free energy relationships establish the extent at which bond formation and breakage happen in the transition state of a reaction, and in combination with kinetic isotope experiments a reaction mechanism can be determined. Free energy relationships are often used to calculate equilibrium constants since they are experimentally difficult to determine. The most common form of free-energy relationships are linear free-energy relationships (LFER). The Brønsted catalysis equation describes the relationship between the ionization constant of a series of catalysts and the reaction rate constant for a reaction on which the catalyst operates. The Hammett equation predicts the equilibrium constant or react ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reaction Rate Constant
In chemical kinetics, a reaction rate constant or reaction rate coefficient () is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants. For a reaction between reactants A and B to form a product C, where :A and B are reactants :C is a product :''a'', ''b'', and ''c'' are stoichiometric coefficients, the reaction rate is often found to have the form: r = k mathrmm mathrm Here is the reaction rate constant that depends on temperature, and and are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the solution. (For a reaction taking place at a boundary, one would use moles of A or B per unit area instead.) The exponents ''m'' and ''n'' are called partial orders of reaction and are ''not'' generally equal to the stoichiometric coefficients ''a'' and ''b''. Instead they depend on the reacti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arrhenius Equation
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and reverse reactions. This equation has a vast and important application in determining the rate of chemical reactions and for calculation of Activation energy, energy of activation. Arrhenius provided a physical justification and interpretation for the formula.Keith J. Laidler, Laidler, K. J. (1987) ''Chemical Kinetics'', Third Edition, Harper & Row, p. 42 Currently, it is best seen as an empirical relationship.Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers It can be used to model the temperature variation of Mass diffusivity, diffusion coefficients, population of Vacancy defect, crystal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pre-exponential Factor
In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential factor can be thought of as a measure of the frequency of properly oriented collisions. It is typically determined experimentally by measuring the rate constant k at a particular temperature and fitting the data to the Arrhenius equation. The pre-exponential factor is generally not exactly constant, but rather depends on the specific reaction being studied and the temperature at which the reaction is occurring. A=\frac=ke^ The units of the pre-exponential factor A are identical to those of the rate constant and will vary depending on the order of the reaction. For a first-order reaction, it has units of s−1. For that reason, it is often ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hammond's Postulate
Hammond's postulate (or alternatively the Hammond–Leffler postulate), is a hypothesis in physical organic chemistry which describes the geometric structure of the transition state in an organic chemical reaction. First proposed by George Hammond in 1955, the postulate states that: If two states, as, for example, a transition state and an unstable intermediate, occur consecutively during a reaction process and have nearly the same energy content, their interconversion will involve only a small reorganization of the molecular structures. Therefore, the geometric structure of a state can be predicted by comparing its energy to the species neighboring it along the reaction coordinate. For example, in an ''exothermic'' reaction the transition state is closer in energy to the reactants than to the products. Therefore, the transition state will be more geometrically similar to the reactants than to the products. In contrast, however, in an ''endothermic'' reaction the transition s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brønsted Catalysis Equation
The Brønsted catalysis equation or law of correlation, after Johannes Nicolaus Brønsted, gives the relationship between acid strength and catalytic activity in general acid catalysis. :\log k = \alpha*\log(K_a) + C A plot of the common logarithm of the reaction rate constant k versus the logarithm of the ionization constant Ka for a series of acids (for example a group of substituted phenols or carboxylic acids) gives a straight line with slope α and intercept C. The Brønsted equation is a free-energy relationship. The relationship implies that the Gibbs free energy for proton dissociation is proportional to the activation energy for the catalytic step. When the relationship is not linear, the chosen group of catalysts do not operate through the same reaction mechanism. Specific and general catalysis is also found in base catalysed reactions and base Brønsted equation also exists with constant β. The Brønsted equation gives information about a reaction mechanism. Reac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Catalytic Resonance Theory
In chemistry, catalytic resonance theory was developed to describe the kinetics of reaction acceleration using dynamic catalyst surfaces. Catalytic reactions occur on surfaces that undergo variation in surface binding energy and/or entropy, exhibiting overall increase in reaction rate when the surface binding energy frequencies are comparable to the natural frequencies of the surface reaction, adsorption, and desorption. History Catalytic resonance theory is constructed on the Sabatier principle of catalysis developed by French chemist Paul Sabatier (chemist), Paul Sabatier. In the limit of maximum catalytic performance, the surface of a catalyst is neither too strong nor too weak. Strong binding results in an overall catalytic reaction rate limitation due to product desorption, while weak binding catalysts are limited in the rate of surface chemistry. Optimal catalyst performance is depicted as a 'volcano' peak using a descriptor of the chemical reaction defining different catalyti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |