HOME



picture info

Bell Numbers
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted B_n, where n is an integer greater than or equal to zero. Starting with B_0 = B_1 = 1, the first few Bell numbers are :1, 1, 2, 5, 15, 52, 203, 877, 4140, \dots . The Bell number B_n counts the different ways to partition a set that has exactly n elements, or equivalently, the equivalence relations on it. B_n also counts the different rhyme schemes for n -line poems. As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, B_n is the n -th moment of a Poisson distribution with mean 1. Counting Set partitions In general, B_n is the number o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Vacuous Truth
In mathematics and logic, a vacuous truth is a conditional or universal statement (a universal statement that can be converted to a conditional statement) that is true because the antecedent cannot be satisfied. It is sometimes said that a statement is vacuously true because it does not really say anything. For example, the statement "all cell phones in the room are turned off" will be true when no cell phones are present in the room. In this case, the statement "all cell phones in the room are turned ''on''" would also be vacuously true, as would the conjunction of the two: "all cell phones in the room are turned on ''and'' turned off", which would otherwise be incoherent and false. More formally, a relatively well-defined usage refers to a conditional statement (or a universal conditional statement) with a false antecedent. One example of such a statement is "if Tokyo is in Spain, then the Eiffel Tower is in Bolivia". Such statements are considered vacuous truths becau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Shuffling
Shuffling is a technique used to randomize a deck of playing cards, introducing an element of chance into card games. Various shuffling methods exist, each with its own characteristics and potential for manipulation. One of the simplest shuffling techniques is the overhand shuffle, where small packets of cards are transferred from one hand to the other. This method is easy to perform but can be manipulated to control the order of cards. Another common technique is the riffle shuffle, where the deck is split into two halves and interleaved. This method is more complex but minimizes the risk of exposing cards. The Gilbert–Shannon–Reeds model suggests that seven riffle shuffles are sufficient to thoroughly randomize a deck, although some studies indicate that six shuffles may be enough. Other shuffling methods include the Hindu shuffle, commonly used in Asia, and the pile shuffle, where cards are dealt into piles and then stacked. The Mongean shuffle involves a specific seq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Stanza
In poetry, a stanza (; from Italian ''stanza'', ; ) is a group of lines within a poem, usually set off from others by a blank line or indentation. Stanzas can have regular rhyme and metrical schemes, but they are not required to have either. There are many different forms of stanzas. Some stanzaic forms are simple, such as four-line quatrains. Other forms are more complex, such as the Spenserian stanza. Fixed verse poems, such as sestinas, can be defined by the number and form of their stanzas. The stanza has also been known by terms such as ''batch'', ''fit'', and ''stave''. The term ''stanza'' has a similar meaning to ''strophe'', though ''strophe'' sometimes refers to an irregular set of lines, as opposed to regular, rhymed stanzas. Even though the term "stanza" is taken from Italian, in the Italian language the word "strofa" is more commonly used. In music, groups of lines are typically referred to as '' verses''. The stanza in poetry is analogous with the paragrap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Poem
Poetry (from the Greek language, Greek word ''poiesis'', "making") is a form of literature, literary art that uses aesthetics, aesthetic and often rhythmic qualities of language to evoke meaning (linguistics), meanings in addition to, or in place of, Denotation, literal or surface-level meanings. Any particular instance of poetry is called a poem and is written by a poet. Poets use a variety of techniques called poetic devices, such as assonance, alliteration, Phonaesthetics#Euphony and cacophony, euphony and cacophony, onomatopoeia, rhythm (via metre (poetry), metre), and sound symbolism, to produce musical or other artistic effects. They also frequently organize these effects into :Poetic forms, poetic structures, which may be strict or loose, conventional or invented by the poet. Poetic structures vary dramatically by language and cultural convention, but they often use Metre (poetry), rhythmic metre (patterns of syllable stress or syllable weight, syllable (mora) weight ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Factorization
In mathematics, factorization (or factorisation, see American and British English spelling differences#-ise, -ize (-isation, -ization), English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several ''Factor (arithmetic), factors'', usually smaller or simpler objects of the same kind. For example, is an ''integer factorization'' of , and is a ''polynomial factorization'' of . Factorization is not usually considered meaningful within number systems possessing division ring, division, such as the real number, real or complex numbers, since any x can be trivially written as (xy)\times(1/y) whenever y is not zero. However, a meaningful factorization for a rational number or a rational function can be obtained by writing it in lowest terms and separately factoring its numerator and denominator. Factorization was first considered by Greek mathematics, ancient Greek mathematicians in the case of integers. They proved the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Multiplicative Partition
In number theory, a multiplicative partition or unordered factorization of an integer n is a way of writing n as a product of integers greater than 1, treating two products as equivalent if they differ only in the ordering of the factors. The number n is itself considered one of these products. Multiplicative partitions closely parallel the study of multipartite partitions, which are additive Partition (number theory), partitions of finite sequences of positive integers, with the addition made pointwise. Although the study of multiplicative partitions has been ongoing since at least 1923, the name "multiplicative partition" appears to have been introduced by . The Latin name "factorisatio numerorum" had been used previously. MathWorld uses the term unordered factorization. Examples *The number 20 has four multiplicative partitions: 2 × 2 × 5, 2 × 10, 4 × 5, and 20. *3 × 3 × 3 × ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Squarefree
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Equivalence Class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Transitive Relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example, less than and equality (mathematics), equality among real numbers are both transitive: If and then ; and if and then . Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie. On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Symmetric Relation
A symmetric relation is a type of binary relation. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: : \forall a, b \in X(a R b \Leftrightarrow b R a) , where the notation ''aRb'' means that . An example is the relation "is equal to", because if is true then is also true. If ''R''T represents the converse of ''R'', then ''R'' is symmetric if and only if . Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. Examples In mathematics * "is equal to" ( equality) (whereas "is less than" is not symmetric) * "is comparable to", for elements of a partially ordered set * "... and ... are odd": :::::: Outside mathematics * "is married to" (in most legal systems) * "is a fully biological sibling of" * "is a homophone of" * "is a co-worker of" * "is a teammate of" Relationship to asymmetric and antisymmetric relations By definition, a nonempty relation cannot be both symmetric and asymmetric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]