Bayesian
Thomas Bayes (/beɪz/; c. 1701 – 1761) was an English statistician, philosopher, and Presbyterian minister. Bayesian () refers either to a range of concepts and approaches that relate to statistical methods based on Bayes' theorem, or a follower of these methods. A number of things have been named after Thomas Bayes, including: Bayes *Bayes action *Bayes Business School * Bayes classifier * Bayes discriminability index *Bayes error rate *Bayes estimator *Bayes factor * Bayes Impact *Bayes linear statistics * Bayes prior * Bayes' theorem / Bayes-Price theorem -- sometimes called Bayes' rule or Bayesian updating. *Empirical Bayes method *Evidence under Bayes theorem *Hierarchical Bayes model * Laplace–Bayes estimator *Naive Bayes classifier * Random naive Bayes Bayesian *Approximate Bayesian computation * Bayesian average *Bayesian Analysis (journal) *Bayesian approaches to brain function * Bayesian bootstrap *Bayesian control rule *Bayesian cognitive science *Bayesian e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Approximate Bayesian Computation
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics that can be used to estimate the posterior distributions of model parameters. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and ap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Game
In game theory, a Bayesian game is a game that models the outcome of player interactions using aspects of Bayesian probability. Bayesian games are notable because they allowed, for the first time in game theory, for the specification of the solutions to games with incomplete information. Hungarian economist John C. Harsanyi introduced the concept of Bayesian games in three papers from 1967 and 1968: He was awarded the Nobel Prize for these and other contributions to game theory in 1994. Roughly speaking, Harsanyi defined Bayesian games in the following way: players are assigned by nature at the start of the game a set of characteristics. By mapping probability distributions to these characteristics and by calculating the outcome of the game using Bayesian probability, the result is a game whose solution is, for technical reasons, far easier to calculate than a similar game in a non-Bayesian context. For those technical reasons, see the Specification of games section in this article ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Epistemology
Bayesian epistemology is a formal approach to various topics in epistemology that has its roots in Thomas Bayes' work in the field of probability theory. One advantage of its formal method in contrast to traditional epistemology is that its concepts and theorems can be defined with a high degree of precision. It is based on the idea that beliefs can be interpreted as Subjective probability, subjective probabilities. As such, they are subject to the laws of probability theory, which act as the norms of rationality. These norms can be divided into static constraints, governing the rationality of beliefs at any moment, and dynamic constraints, governing how rational agents should change their beliefs upon receiving new evidence. The most characteristic Bayesian expression of these principles is found in the form of Dutch books, which illustrate irrationality in agents through a series of bets that lead to a loss for the agent no matter which of the probabilistic events occurs. Bayesian ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Approaches To Brain Function
Bayesian approaches to brain function investigate the capacity of the nervous system to operate in situations of uncertainty in a fashion that is close to the optimal prescribed by Bayesian statistics. This term is used in behavioural sciences and neuroscience and studies associated with this term often strive to explain the brain's cognitive abilities based on statistical principles. It is frequently assumed that the nervous system maintains internal probabilistic models that are updated by neural processing of sensory information using methods approximating those of Bayesian probability. Origins This field of study has its historical roots in numerous disciplines including machine learning, experimental psychology and Bayesian statistics. As early as the 1860s, with the work of Hermann Helmholtz in experimental psychology the brain's ability to extract perceptual information from sensory data was modeled in terms of probabilistic estimation. The basic idea is that the nervous sys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayes' Theorem
In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately (by conditioning it on their age) than simply assuming that the individual is typical of the population as a whole. One of the many applications of Bayes' theorem is Bayesian inference, a particular approach to statistical inference. When applied, the probabilities involved in the theorem may have different probability interpretations. With Bayesian probability interpretation, the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence. Bayesian inference is fundamental to Bayesia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Econometrics
Bayesian econometrics is a branch of econometrics which applies Bayesian principles to economic modelling. Bayesianism is based on a degree-of-belief interpretation of probability, as opposed to a relative-frequency interpretation. The Bayesian principle relies on Bayes' theorem which states that the probability of B conditional on A is the ratio of joint probability of A and B divided by probability of B. Bayesian econometricians assume that coefficients in the model have prior distributions. This approach was first propagated by Arnold Zellner. Basics Subjective probabilities have to satisfy the standard axioms of probability theory if one wishes to avoid losing a bet regardless of the outcome. Before the data is observed, the parameter \theta is regarded as an unknown quantity and thus random variable, which is assigned a prior distribution \pi(\theta) with 0 \leq \theta \leq 1. Bayesian analysis concentrates on the inference of the posterior distribution \pi(\theta, y) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayes Factor
The Bayes factor is a ratio of two competing statistical models represented by their marginal likelihood, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, but since it uses the (integrated) marginal likelihood instead of the maximized likelihood, both tests only coincide under simple hypotheses (e.g., two specific parameter values). Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence ''in favor'' of a null hypothesis, rather than only allowing the null to be rejected or not rejected. Although conceptually simple, the computation of the Bayes factor can be challenging depending on the complexity of the model ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayes Prior
In Bayesian statistical inference, a prior probability distribution, often simply called the prior, of an uncertain quantity is the probability distribution that would express one's beliefs about this quantity before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable. Bayes' theorem calculates the renormalized pointwise product of the prior and the likelihood function, to produce the ''posterior probability distribution'', which is the conditional distribution of the uncertain quantity given the data. Similarly, the prior probability of a random event or an uncertain proposition is the unconditional probability that is assigned before any relevant evidence is taken into account. Priors can be created using a nu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Naive Bayes Classifier
In statistics, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features (see Bayes classifier). They are among the simplest Bayesian network models, but coupled with kernel density estimation, they can achieve high accuracy levels. Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form expression, which takes linear time, rather than by expensive iterative approximation as used for many other types of classifiers. In the statistics literature, naive Bayes models are known under a variety of names, including simple Bayes and independence Bayes. All these names reference the use of Bayes' theorem in the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method. Introductio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hierarchical Bayes Model
Multilevel models (also known as hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped. These models can be seen as generalizations of linear models (in particular, linear regression), although they can also extend to non-linear models. These models became much more popular after sufficient computing power and software became available. Multilevel models are particularly appropriate for research designs where data for participants are organized at more than one level (i.e., nested data). The units of analysis are usually individuals (at a lower level) who are nested within contextual/aggregate units (at a higher leve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empirical Bayes Method
Empirical Bayes methods are procedures for statistical inference in which the prior probability distribution is estimated from the data. This approach stands in contrast to standard Bayesian methods, for which the prior distribution is fixed before any data are observed. Despite this difference in perspective, empirical Bayes may be viewed as an approximation to a fully Bayesian treatment of a hierarchical model wherein the parameters at the highest level of the hierarchy are set to their most likely values, instead of being integrated out. Empirical Bayes, also known as maximum marginal likelihood, represents a convenient approach for setting hyperparameters, but has been mostly supplanted by fully Bayesian hierarchical analyses since the 2000s with the increasing availability of well-performing computation techniques. Introduction Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model. In, for example, a two-stag ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Experimental Design
Bayesian experimental design provides a general probability-theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for both any prior knowledge on the parameters to be determined as well as uncertainties in observations. The theory of Bayesian experimental design is to a certain extent based on the theory for making optimal decisions under uncertainty. The aim when designing an experiment is to maximize the expected utility of the experiment outcome. The utility is most commonly defined in terms of a measure of the accuracy of the information provided by the experiment (e.g. the Shannon information or the negative of the variance), but may also involve factors such as the financial cost of performing the experiment. What will be the optimal experiment design depends on the particular utility criterion chosen. Relations to more ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |