Barrier (computer Science)
In parallel computing, a barrier is a type of synchronization (computer science), synchronization method. A barrier for a group of threads or processes in the source code means any thread/process must stop at this point and cannot proceed until all other threads/processes reach this barrier. Many collective routines and directive-based parallel languages impose implicit barriers. For example, a parallel ''do'' loop in Fortran with OpenMP will not be allowed to continue on any thread until the last iteration is completed. This is in case the program relies on the result of the loop immediately after its completion. In message passing, any global communication (such as reduction or scatter) may imply a barrier. In concurrent computing, a barrier may be in a ''raised'' or ''lowered state''. The term latch is sometimes used to refer to a barrier that starts in the raised state and cannot be re-raised once it is in the lowered state. The term count-down latch is sometimes used to refer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parallel Computing
Parallel computing is a type of computing, computation in which many calculations or Process (computing), processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: Bit-level parallelism, bit-level, Instruction-level parallelism, instruction-level, Data parallelism, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.S.V. Adve ''et al.'' (November 2008)"Parallel Computing Research at Illinois: The UPCRC Agenda" (PDF). Parallel@Illinois, University of Illinois at Urbana-Champaign. "The main techniques for these performance benefits—increased clock frequency and smarter but increasingly complex architectures—are now hitting the so-called power wall. The computer industry has accepted that future performance inc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
C (programming Language)
C (''pronounced'' '' – like the letter c'') is a general-purpose programming language. It was created in the 1970s by Dennis Ritchie and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted Central processing unit, CPUs. It has found lasting use in operating systems code (especially in Kernel (operating system), kernels), device drivers, and protocol stacks, but its use in application software has been decreasing. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems. A successor to the programming language B (programming language), B, C was originally developed at Bell Labs by Ritchie between 1972 and 1973 to construct utilities running on Unix. It was applied to re-implementing the kernel of the Unix operating system. During the 1980s, C gradually gained popularity. It has become one of the most widely used programming langu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concurrency Control
In information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible. Computer systems, both software and hardware, consist of modules, or components. Each component is designed to operate correctly, i.e., to obey or to meet certain consistency rules. When components that operate concurrently interact by messaging or by sharing accessed data (in memory or storage), a certain component's consistency may be violated by another component. The general area of concurrency control provides rules, methods, design methodologies, and theories to maintain the consistency of components operating concurrently while interacting, and thus the consistency and correctness of the whole system. Introducing concurrency control into a system means applying operation constraints ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Synchronization
Synchronization is the coordination of events to operate a system in unison. For example, the Conductor (music), conductor of an orchestra keeps the orchestra synchronized or ''in time''. Systems that operate with all parts in synchrony are said to be synchronous or ''in sync''—and those that are not are ''Asynchronous system, asynchronous''. Today, time synchronization can occur between systems around the world through satellite navigation signals and other time and frequency transfer techniques. Navigation and railways Time-keeping and synchronization of clocks is a critical problem in long-distance ocean navigation. Before radio navigation and Radionavigation-satellite service, satellite-based navigation, navigators required accurate time in conjunction with astronomical observations to determine History of longitude, how far east or west their vessel traveled. The invention of an accurate marine chronometer revolutionized marine navigation. By the end of the 19th cent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Memory Barrier
In computing, a memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the barrier are guaranteed to be performed before operations issued after the barrier. Memory barriers are necessary because most modern CPUs employ performance optimizations that can result in out-of-order execution. This reordering of memory operations (loads and stores) normally goes unnoticed within a single thread of execution, but can cause unpredictable behavior in concurrent programs and device drivers unless carefully controlled. The exact nature of an ordering constraint is hardware dependent and defined by the architecture's memory ordering model. Some architectures provide multiple barriers for enforcing different ordering constra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rendezvous (Plan 9)
Rendezvous is a data synchronization mechanism in Plan 9 from Bell Labs. It is a system call that allows two processes to exchange a single datum while synchronizing. The rendezvous call takes a ''tag'' and a ''value'' as its arguments. The tag is typically an address in memory shared by both processes. Calling rendezvous causes a process to sleep until a second rendezvous call with a matching tag occurs. Then, the values are exchanged and both processes are awakened. More complex synchronization mechanisms can be created from this primitive operation. See also mutual exclusion. See also * Synchronous rendezvous * Communicating sequential processes References External links Process Sleep and Wakeup on a Shared-memory Multiprocessorby Rob Pike, Dave Presotto, Ken Thompson Kenneth Lane Thompson (born February 4, 1943) is an American pioneer of computer science. Thompson worked at Bell Labs for most of his career where he designed and implemented the original Unix ope ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fork–join Model
In parallel computing, the fork–join model is a way of setting up and executing parallel programs, such that execution branches off in parallel at designated points in the program, to "join" (merge) at a subsequent point and resume sequential execution. Parallel sections may fork recursively until a certain task granularity is reached. Fork–join can be considered a parallel design pattern. It was formulated as early as 1963. By nesting fork–join computations recursively, one obtains a parallel version of the divide and conquer paradigm, expressed by the following generic pseudocode: solve(problem): if problem is small enough: solve problem directly (sequential algorithm) else: for part in subdivide(problem) fork subtask to solve(part) join all subtasks spawned in previous loop return combined results Examples The simple parallel merge sort In computer science, merge sort (also commonly spelled as mergeso ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stackoverflow
In software, a stack overflow occurs if the call stack pointer exceeds the stack bound. The call stack may consist of a limited amount of address space, often determined at the start of the program. The size of the call stack depends on many factors, including the programming language, machine architecture, multi-threading, and amount of available memory. When a program attempts to use more space than is available on the call stack (that is, when it attempts to access memory beyond the call stack's bounds, which is essentially a buffer overflow), the stack is said to ''overflow'', typically resulting in a program crash. Causes Infinite recursion The most-common cause of stack overflow is excessively deep or infinite recursion, in which a function calls itself so many times that the space needed to store the variables and information associated with each call is more than can fit on the stack. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scalability Testing
Scalability testing is the testing of a Application software, software application to measure its Capability (systems engineering), capability to Scalability#Horizontal and vertical scaling, scale up or scale out in terms of any of its non-functional capability. Software performance testing, Performance, scalability and Software reliability testing, reliability testing are usually grouped together by software quality analysts. The main goals of scalability testing are to determine the user limit for the web application and ensure end user experience, under a high load, is not compromised. One example is if a web page can be accessed in a timely fashion with a limited delay in response. Another goal is to check if the Server (computing), server can cope i.e. Will the server crash if it is under a heavy load? Dependent on the application that is being tested, different parameters are tested. If a webpage is being tested, the highest possible number of simultaneous users would be test ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Synchronization (computer Science)
In computer science, synchronization is the task of coordinating multiple processes to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. Motivation The need for synchronization does not arise merely in multi-processor systems but for any kind of concurrent processes; even in single processor systems. Mentioned below are some of the main needs for synchronization: '' Forks and Joins:'' When a job arrives at a fork point, it is split into N sub-jobs which are then serviced by n tasks. After being serviced, each sub-job waits until all other sub-jobs are done processing. Then, they are joined again and leave the system. Thus, parallel programming requires synchronization as all the parallel processes wait for several other processes to occur. '' Producer-Consumer:'' In a producer-consumer relationship, the consumer process is dependent on the producer process until the necessary data has been produced. ''Exclusiv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lock (computer Science)
In computer science, a lock or mutex (from mutual exclusion) is a synchronization primitive that prevents state from being modified or accessed by multiple threads of execution at once. Locks enforce mutual exclusion concurrency control policies, and with a variety of possible methods there exist multiple unique implementations for different applications. Types Generally, locks are ''advisory locks'', where each thread cooperates by acquiring the lock before accessing the corresponding data. Some systems also implement ''mandatory locks'', where attempting unauthorized access to a locked resource will force an exception in the entity attempting to make the access. The simplest type of lock is a binary semaphore. It provides exclusive access to the locked data. Other schemes also provide shared access for reading data. Other widely implemented access modes are exclusive, intend-to-exclude and intend-to-upgrade. Another way to classify locks is by what happens when the lock st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Synchronization Primitive
In computer science, synchronization is the task of coordinating multiple processes to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. Motivation The need for synchronization does not arise merely in multi-processor systems but for any kind of concurrent processes; even in single processor systems. Mentioned below are some of the main needs for synchronization: '' Forks and Joins:'' When a job arrives at a fork point, it is split into N sub-jobs which are then serviced by n tasks. After being serviced, each sub-job waits until all other sub-jobs are done processing. Then, they are joined again and leave the system. Thus, parallel programming requires synchronization as all the parallel processes wait for several other processes to occur. '' Producer-Consumer:'' In a producer-consumer relationship, the consumer process is dependent on the producer process until the necessary data has been produced. ''Exclusive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |