Bar Induction
   HOME
*





Bar Induction
Bar induction is a reasoning principle used in intuitionistic mathematics, introduced by L. E. J. Brouwer. Bar induction's main use is the intuitionistic derivation of the fan theorem, a key result used in the derivation of the uniform continuity theorem. It is also useful in giving constructive alternatives to other classical results. The goal of the principle is to prove properties for all infinite sequences of natural numbers (called choice sequences in intuitionistic terminology), by inductively reducing them to properties of finite lists. Bar induction can also be used to prove properties about all choice sequences in a spread (a special kind of set). Definition Given a choice sequence x_0,x_1,x_2,x_3,\ldots, any finite sequence of elements x_0,x_1,x_2,x_3,\ldots,x_i of this sequence is called an ''initial segment'' of this choice sequence. There are three forms of bar induction currently in the literature, each one places certain restrictions on a pair of predicates a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intuitionism
In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fundamental principles claimed to exist in an objective reality. That is, logic and mathematics are not considered analytic activities wherein deep properties of objective reality are revealed and applied, but are instead considered the application of internally consistent methods used to realize more complex mental constructs, regardless of their possible independent existence in an objective reality. Truth and proof The fundamental distinguishing characteristic of intuitionism is its interpretation of what it means for a mathematical statement to be true. In Brouwer's original intuitionism, the truth of a mathematical statement is a subjective claim: a mathematical statement corresponds to a mental construction, and a mathematician can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joan Moschovakis
Joan Rand Moschovakis is a logician and mathematician focusing on intuitionistic logic and mathematics. She is professor emerita at Occidental College and a guest at UCLA. Moschovakis earned her Ph.D. from the University of Wisconsin–Madison in 1965 under the direction of Stephen Kleene, with a dissertation entitled ''Disjunction, Existence and *-Eliminability in Formalized Intuitionistic Analysis''. Moschovakis is married to Yiannis Moschovakis, with whom she gave the 2014 Lindström Lectures at the University of Gothenburg The University of Gothenburg ( sv, Göteborgs universitet) is a university in Sweden's second largest city, Gothenburg. Founded in 1891, the university is the third-oldest of the current Swedish universities and with 37,000 students and 6000 st .... Selected publications * * * * References External links Home page* 1938 births Living people Scientists from Athens University of Wisconsin–Madison alumni 20th-century Greek mathematici ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirk Van Dalen
Dirk van Dalen (born 20 December 1932, Amsterdam) is a Dutch mathematician and historian of science. Van Dalen studied mathematics and physics and astronomy at the University of Amsterdam. Inspired by the work of Brouwer and Heyting, he received his Ph.D. in 1963 from the University of Amsterdam for the thesis ''Extension problems in intuitionistic plane Projective geometry.'' From 1964 to 1966 Van Dalen taught logic and mathematics at MIT, and later Oxford. From 1967 he was professor at the University of Utrecht. In 2003 Dirk van Dalen was awarded the Academy Medal 2003 of the Royal Dutch Academy of Sciences for bringing the works of Brouwer to international attention. Works * 1958: (with Yehoshua Bar-Hillel and Azriel Levy) ''Foundations of Set Theory'', North Holland Publishing * 1963: Extension problems in intuitionistic plane projective geometry * 1978: (with H.C. Doets and H. De Swart) ''Sets: Naive, Axiomatic and Applied'', Pergamon Press * 1980: ''Logic and Structure'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Dummett
Sir Michael Anthony Eardley Dummett (27 June 1925 – 27 December 2011) was an English academic described as "among the most significant British philosophers of the last century and a leading campaigner for racial tolerance and equality." He was, until 1992, Wykeham Professor of Logic at the University of Oxford. He wrote on the history of analytic philosophy, notably as an interpreter of Frege, and made original contributions particularly in the philosophies of mathematics, logic, language and metaphysics. He was known for his work on truth and meaning and their implications to debates between realism and anti-realism, a term he helped to popularize. He devised the Quota Borda system of proportional voting, based on the Borda count. In mathematical logic, he developed an intermediate logic, already studied by Kurt Gödel: the Gödel–Dummett logic. Education and army service Born 27 June 1925, Dummett was the son of George Herbert Dummett (1880–1970), a silk merchant, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transfinite Induction
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then P(\alpha) is also true. Then transfinite induction tells us that P is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that P(0) is true. * Successor case: Prove that for any \alpha+1, P(\alpha+1) follows from P(\alpha) (and, if necessary, P(\beta) for all \beta < \alpha). * Limit case: Prove that for any



Well-order
In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element. Every element ''s'' of a well-ordered set, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than ''s''. There may be elements besides the least element which have no predecessor (see below for an example). A well-ordered set ''S'' contains for every subset ''T'' with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of ''T'' in ''S''. If ≤ is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reverse Mathematics
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones. The reverse mathematics program was foreshadowed by results in set theory such as the classical theorem that the axiom of choice and Zorn's lemma are equivalent over ZF set theory. The goal of reverse mathematics, however, is to study possible axioms of ordinary theorems of mathematics rather than possible axioms for set theory. Reverse mathematics is usually carried out using subsystems of second-order arithmetic,Simpson, Stephen G. (2009), Subsystems of second-order arithmetic, Perspectives in Logic (2nd ed.), Cambridge University Press, doi:10.1017/CBO9780511581007, ISBN 978 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Turnstile (symbol)
In mathematical logic and computer science the symbol \vdash has taken the name turnstile because of its resemblance to a typical turnstile if viewed from above. It is also referred to as tee and is often read as "yields", "proves", "satisfies" or "entails". Interpretations The turnstile represents a binary relation. It has several different interpretations in different contexts: * In epistemology, Per Martin-Löf (1996) analyzes the \vdash symbol thus: "... e combination of Frege's , judgement stroke   and , content stroke €” came to be called the assertion sign." Frege's notation for a judgement of some content ::\vdash A :can then be read ::''I know is true''. :In the same vein, a conditional assertion ::P \vdash Q :can be read as: ::''From , I know that '' * In metalogic, the study of formal languages; the turnstile represents syntactic consequence (or "derivability"). This is to say, that it shows that one string can be derived from another in a single step, acc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stephen Cole Kleene
Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory, which subsequently helped to provide the foundations of theoretical computer science. Kleene's work grounds the study of computable functions. A number of mathematical concepts are named after him: Kleene hierarchy, Kleene algebra, the Kleene star (Kleene closure), Kleene's recursion theorem and the Kleene fixed-point theorem. He also invented regular expressions in 1951 to describe McCulloch-Pitts neural networks, and made significant contributions to the foundations of mathematical intuitionism. Biography Kleene was awarded a bachelor's degree from Amherst College in 1930. He was awarded a Ph.D. in mathematics from Princeton University in 1934, where his thesis, entitled ''A Theory of Positi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Constructive Mathematics
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the existential quantifier, which is at odds with its classical interpretation. There are many forms of constructivism. These include the program of intuitionism founded by Brouwer, the finitism of Hilbert and Bernays, the constructive recursive mathematics of Shanin and Markov, and Bishop's program of constructive analysis. Constructivism also includes the study of constructive set theories such as CZF ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decidability (logic)
In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership (returning a correct answer after finite, though possibly very long, time in all cases) can exist for them. Decidability of a logical system Each logical system comes with both a syntactic component, which among other things determines the notion of provability, and a semantic component, which determines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]