Balanced Module
   HOME
*





Balanced Module
In the subfield of abstract algebra known as module theory, a right ''R'' module ''M'' is called a balanced module (or is said to have the double centralizer property) if every endomorphism of the abelian group ''M'' which commutes with all ''R''-endomorphisms of ''M'' is given by multiplication by a ring element. Explicitly, for any additive endomorphism ''f'', if ''fg'' = ''gf'' for every ''R'' endomorphism ''g'', then there exists an ''r'' in ''R'' such that ''f''(''x'') = ''xr'' for all ''x'' in ''M''. In the case of non-balanced modules, there will be such an ''f'' that is not expressible this way. In the language of centralizers, a balanced module is one satisfying the conclusion of the double centralizer theorem, that is, the only endomorphisms of the group ''M'' commuting with all the ''R'' endomorphisms of ''M'' are the ones induced by right multiplication by ring elements. A ring is called balanced if every right ''R'' module is balanced.The definitions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morita Equivalence
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like ''R'', ''S'' are Morita equivalent (denoted by R\approx S) if their categories of modules are additively equivalent (denoted by _M\approx_M). It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958. Motivation Rings are commonly studied in terms of their modules, as modules can be viewed as representations of rings. Every ring ''R'' has a natural ''R''-module structure on itself where the module action is defined as the multiplication in the ring, so the approach via modules is more general and gives useful information. Because of this, one often studies a ring by studying the category of modules over that ring. Morita equivalence takes this viewpoint to a natural conclusion by defining rings to be Morita equivalent if their module categories are equivalent. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Center Of A Ring
In algebra, the center of a ring ''R'' is the subring consisting of the elements ''x'' such that ''xy = yx'' for all elements ''y'' in ''R''. It is a commutative ring and is denoted as Z(R); "Z" stands for the German word ''Zentrum'', meaning "center". If ''R'' is a ring, then ''R'' is an associative algebra over its center. Conversely, if ''R'' is an associative algebra over a commutative subring ''S'', then ''S'' is a subring of the center of ''R'', and if ''S'' happens to be the center of ''R'', then the algebra ''R'' is called a central algebra. Examples *The center of a commutative ring ''R'' is ''R'' itself. *The center of a skew-field is a field. *The center of the (full) matrix ring with entries in a commutative ring ''R'' consists of ''R''-scalar multiples of the identity matrix. *Let ''F'' be a field extension of a field ''k'', and ''R'' an algebra over ''k''. Then Z\left(R \otimes_k F\right) = Z(R) \otimes_k F. *The center of the universal enveloping algebra of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finitely Generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''-module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a generating ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniserial Ring
In abstract algebra, a uniserial module ''M'' is a module over a ring ''R'', whose submodules are totally ordered by inclusion. This means simply that for any two submodules ''N''1 and ''N''2 of ''M'', either N_1\subseteq N_2 or N_2\subseteq N_1. A module is called a serial module if it is a direct sum of uniserial modules. A ring ''R'' is called a right uniserial ring if it is uniserial as a right module over itself, and likewise called a right serial ring if it is a right serial module over itself. Left uniserial and left serial rings are defined in an analogous way, and are in general distinct from their right counterparts. An easy motivating example is the quotient ring \mathbb/n\mathbb for any integer n>1. This ring is always serial, and is uniserial when ''n'' is a prime power. The term ''uniserial'' has been used differently from the above definition: for clarification see below. A partial alphabetical list of important contributors to the theory of serial rings inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Module
In mathematics, specifically in ring theory, the simple modules over a ring ''R'' are the (left or right) modules over ''R'' that are non-zero and have no non-zero proper submodules. Equivalently, a module ''M'' is simple if and only if every cyclic submodule generated by a element of ''M'' equals ''M''. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory. In this article, all modules will be assumed to be right unital modules over a ring ''R''. Examples Z-modules are the same as abelian groups, so a simple Z-module is an abelian group which has no non-zero proper subgroups. These are the cyclic groups of prime order. If ''I'' is a right ideal of ''R'', then ''I'' is simple as a right module if and only if ''I'' is a minimal non-zero right ideal: If ''M'' is a non-zero proper submodule of ''I'', then it is also a right ideal, so ''I'' is not minimal. Conversely, if ''I'' is not minimal, then t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-Frobenius Ring
In mathematics, especially ring theory, the class of Frobenius rings and their generalizations are the extension of work done on Frobenius algebras. Perhaps the most important generalization is that of quasi-Frobenius rings (QF rings), which are in turn generalized by right pseudo-Frobenius rings (PF rings) and right finitely pseudo-Frobenius rings (FPF rings). Other diverse generalizations of quasi-Frobenius rings include QF-1, QF-2 and QF-3 rings. These types of rings can be viewed as descendants of algebras examined by Georg Frobenius. A partial list of pioneers in quasi-Frobenius rings includes Richard Brauer, R. Brauer, Kiiti Morita, K. Morita, Tadashi Nakayama (mathematician), T. Nakayama, Cecil J. Nesbitt, C. J. Nesbitt, and Robert M. Thrall, R. M. Thrall. Definitions A ring ''R'' is quasi-Frobenius if and only if ''R'' satisfies any of the following equivalent conditions: # ''R'' is noetherian ring, Noetherian on one side and injective module#Self-injective rings, self-in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Faithful Module
In mathematics, the annihilator of a subset of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by an element of . Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal. Definitions Let ''R'' be a ring, and let ''M'' be a left ''R''-module. Choose a non-empty subset ''S'' of ''M''. The annihilator of ''S'', denoted Ann''R''(''S''), is the set of all elements ''r'' in ''R'' such that, for all ''s'' in ''S'', . In set notation, :\mathrm_R(S)=\ It is the set of all elements of ''R'' that "annihilate" ''S'' (the elements for which ''S'' is a torsion set). Subsets of right modules may be used as well, after the modification of "" in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Ring
In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. So, simple algebra and ''simple ring'' are synonyms. Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple). Under such terminology a non-zero ring with no non-trivial two-sided ideals is called quasi-simple. Rings which are simple as rings but are not a simple module over themselves do exist: a full matrix ring over a field does not have any nontrivial ideals (since any ideal of M_n(R) is of the form M_n(I) with I an ideal of R), but has nontrivial left ideals (for example, the sets of matrices which have some fixed zero columns). Accord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semisimple Ring
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings. For a group-theory analog of the same notion, see ''Semisimple representation''. Definition A module over a (not necessarily commutative) ring is said to be semisimple (or completely reducible) if it is the direct sum of simple (irreducible) submodules. For a module ''M'', the following are equivalent: # ''M'' is semisimple; i.e., a dir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module Theory
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]