Bacterial Oxidation
Bacteria biooxidation is an oxidation process caused by microbes where the valuable metal remains (but becomes enriched) in the solid phase. In this process, the metal remains in the solid phase and the liquid can be discarded. Bacterial oxidation is a biohydrometallurgical process developed for pre- cyanidation treatment of refractory gold ores or concentrates. The bacterial culture is a mixed culture of ''Acidithiobacillus ferrooxidans'', ''Acidithiobacillus thiooxidans'' and '' Leptospirillum ferrooxidans''. The bacterial oxidation process comprises contacting refractory sulfide ROM ore or concentrate with a strain of the bacterial culture for a suitable treatment period under an optimum operating environment. The bacteria oxidise the sulfide minerals, thus liberating the occluded gold for subsequent recovery via cyanidation. The BIOX® process is a proprietary technology owned by Biomin South Africa and used under licence by a number of operating mines. The BIOX® proce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biohydrometallurgy
Biohydrometallurgy is a technique in the world of metallurgy that utilizes biological agents (bacteria) to recover and treat metals such as copper. Modern biohydrometallurgy advances started with the bioleaching of copper more efficiently in the 1950's Important Definitions *Bio: Shortened form of Biology; refers to usage of bacteria. *Hydro: Term referring to the usage of water; process occurs in aqueous environments *Metallurgy: A process involving the separating and refining of metals from other substances; *Bioleaching: Using biological agents (bacteria) to extract metals or soils; general term used to encompass all forms biotechnological forms of extraction (hydrometallurgy, biohydrometallurgy, biomining, etc) General Information * Interdisciplinary field involving processes that ** make use of microbes, usually bacteria and archaea ** mainly take place in aqueous environment ** deal with metal production and treatment of metal containing materials and solutions *"Bioh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iron Sulfide
Iron sulfide or Iron sulphide can refer to range of chemical compounds composed of iron and sulfur. Minerals By increasing order of stability: * Iron(II) sulfide, FeS * Greigite, Fe3S4 (cubic) * Pyrrhotite, Fe1−xS (where x = 0 to 0.2) (monoclinic or hexagonal) * Troilite, FeS, the endmember of pyrrhotite (hexagonal) * Mackinawite, Fe1+xS (where x = 0 to 0.1) (tetragonal) * Marcasite, orthorhombic FeS2 * Pyrite, cubic FeS2 (fool's gold) * Arsenopyrite (''mispickel''), FeAsS, or Fe(As-S), Fe(III) mixed arseno-sulfide (monoclinic) Synthetic * Iron(III) sulfide, Fe2S3 * Iron-sulfur clusters Iron–sulfur proteins (or iron–sulphur proteins in British spelling) are proteins characterized by the presence of iron–sulfur clusters containing sulfide-linked di-, tri-, and tetrairon centers in variable oxidation states. Iron–sulfur cl ..., includes both synthetic and biological Biological * Iron–sulfur protein {{DEFAULTSORT:Iron Sulfide Iron compounds Iron minerals Sul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geomicrobiology
Geomicrobiology is the scientific field at the intersection of geology and microbiology and is a major subfield of geobiology. It concerns the role of microbes on geological and geochemical processes and effects of minerals and metals to microbial growth, activity and survival. Such interactions occur in the geosphere (rocks, minerals, soils, and sediments), the atmosphere and the hydrosphere. Geomicrobiology studies microorganisms that are driving the Earth's biogeochemical cycles, mediating mineral precipitation and dissolution, and sorbing and concentrating metals. The applications include for example bioremediation, mining, climate change mitigation and public drinking water supplies. Rocks and minerals Microbe-aquifer interactions Microorganisms are known to impact aquifers by modifying their rates of dissolution. In the karstic Edwards Aquifer, microbes colonizing the aquifer surfaces enhance the dissolution rates of the host rock. In the oceanic crustal aquifer, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Economic Geology
Economic geology is concerned with earth materials that can be used for economic and/or industrial purposes. These materials include precious and base metals, nonmetallic minerals and construction-grade stone. Economic geology is a subdiscipline of the geosciences; according to Lindgren (1933) it is “the application of geology”. Today, it may be called the scientific study of the Earth's sources of mineral raw materials and the practical application of the acquired knowledge. The term commonly refers to metallic mineral deposits and mineral resources. The techniques employed by other earth science disciplines (such as geochemistry, mineralogy, geophysics, petrology, paleontology and structural geology) might all be used to understand, describe, and exploit an ore deposit. Economic geology is studied and practiced by geologists. Economic geology may be of interest to other professions such as engineers, environmental scientists, and conservationists because of the far-reachi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iron(III) Hydroxide
Iron(III) oxide-hydroxide or ferric oxyhydroxideA. L. Mackay (1960): "β-Ferric Oxyhydroxide". ''Mineralogical Magazine'' (''Journal of the Mineralogical Society''), volume 32, issue 250, pages 545-557. is the chemical compound of iron, oxygen, and hydrogen with formula . The compound is often encountered as one of its hydrates, ·''n'' ust The monohydrate · is often referred to as iron(III) hydroxide ,CAS , C.I. 77492 hydrated iron oxide, yellow iron oxide, or Pigment Yellow 42. Natural occurrences Minerals Anhydrous ferric hydroxide occurs in the nature as the exceedingly rare mineral bernalite, Fe(OH)3·''n''H2O (n=0.0-0.25). Iron oxyhydroxides, , are much more common and occur naturally as structurally different minerals (polymorphs) denoted by the Greek letters α, β, γ and δ. * Goethite, α-FeO(OH), has been used as an ochre pigment since prehistoric times. * Akaganeite is the β polymorph,A. L. Mackay (1962): "β-Ferric oxyhydroxide—akaganéite", ''Minera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iron(III) Arsenate
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in front of oxygen (32.1% and 30.1%, respectively), forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust. In its metallic state, iron is rare in the Earth's crust, limited mainly to deposition by meteorites. Iron ores, by contrast, are among the most abundant in the Earth's crust, although extracting usable metal from them requires kilns or furnaces capable of reaching or higher, about higher than that required to smelt copper. Humans started to master that process in Eurasia during the 2nd millennium BCE and the use of iron tools and weapons began to displace copper alloys, in some regions, only around 1200 BCE. That event is considered the transition from the Bronze Age to the Iron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Calcium Sulfate
Calcium sulfate (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ-anhydrite (the anhydrous form), it is used as a desiccant. One particular hydrate is better known as plaster of Paris, and another occurs naturally as the mineral gypsum. It has many uses in industry. All forms are white solids that are poorly soluble in water.Franz Wirsching "Calcium Sulfate" in Ullmann's Encyclopedia of Industrial Chemistry, 2012 Wiley-VCH, Weinheim. Calcium sulfate causes permanent hardness in water. Hydration states and crystallographic structures The compound exists in three levels of hydration corresponding to different crystallographic structures and to minerals: * (anhydrite): anhydrous state. The structure is related to that of zirconium orthosilicate (zircon): is 8-coordinate, is tetrahedral, O is 3-coordinate. * (gypsum and selenite (mineral)): dihydrate. * (bassanite): hemihydrate, also known as plaster of Paris. Spe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precipitate
In an aqueous solution, precipitation is the process of transforming a dissolved substance into an insoluble solid from a super-saturated solution. The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the ''precipitant''. The clear liquid remaining above the precipitated or the centrifuged solid phase is also called the 'supernate' or 'supernatant'. The notion of precipitation can also be extended to other domains of chemistry (organic chemistry and biochemistry) and even be applied to the solid phases (''e.g.'', metallurgy and alloys) when solid impurities segregate from a solid phase. Supersaturation The precipitation of a compound may occur when its concentration exceeds its solubility. This can be due to temperature changes, solvent evaporation, or by mixing solvents. Precipitation occurs more rapidly from a strongly supersaturated solution. The formati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutralization (chemistry)
In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which acid and a base react quantitatively with each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The pH of the neutralized solution depends on the acid strength of the reactants. Meaning of "neutralization" In the context of a chemical reaction the term neutralization is used for a reaction between an acid and a base or alkali. Historically, this reaction was represented as :acid + base (alkali) → salt + water For example: :HCl + NaOH → NaCl + H2O The statement is still valid as long as it is understood that in an aqueous solution the substances involved are subject to dissociation, which changes the ionization state of the substances. The arrow sign, →, is used because the reaction is complete, that is, neutralization is a quantitative reaction. A more general definition is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coprecipitation
In chemistry, coprecipitation (CPT) or co-precipitation is the carrying down by a precipitate of substances normally soluble under the conditions employed. Analogously, in medicine, coprecipitation is specifically the precipitation of an unbound "antigen along with an antigen-antibody complex". Coprecipitation is an important topic in chemical analysis, where it can be undesirable, but can also be usefully exploited. In gravimetric analysis, which consists on precipitating the analyte and measuring its mass to determine its concentration or purity, coprecipitation is a problem because undesired impurities often coprecipitate with the analyte, resulting in excess mass. This problem can often be mitigated by "digestion" (waiting for the precipitate to equilibrate and form larger and purer particles) or by redissolving the sample and precipitating it again.Harvey, D. (2000). ''Modern Analytical Chemistry''. McGraw-Hill. On the other hand, in the analysis of trace elements, as is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arsenic Acid
Arsenic acid or trihydrogen arsenate is the chemical compound with the formula . More descriptively written as , this colorless acid is the arsenic analogue of phosphoric acid. Arsenate and phosphate salts behave very similarly. Arsenic acid as such has not been isolated, but is only found in solution, where it is largely ionized. Its hemihydrate form () does form stable crystals. Crystalline samples dehydrate with condensation at 100 °C. Properties It is a tetrahedral species of idealized symmetry ''C''3v with As–O bond lengths ranging from 1.66 to 1.71 Å. Being a triprotic acid, its acidity is described by three equilibria: :, p''K''a1 = 2.19 :, p''K''a2 = 6.94 :, p''K''a3 = 11.5 These p''K''a values are close to those for phosphoric acid. The highly basic arsenate ion () is the product of the third ionization. Unlike phosphoric acid, arsenic acid is an oxidizer, as illustrated by its ability to convert iodide to iodine. Preparation Arsenic acid is pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arsenopyrite
Arsenopyrite ( IMA symbol: Apy) is an iron arsenic sulfide (FeAsS). It is a hard ( Mohs 5.5-6) metallic, opaque, steel grey to silver white mineral with a relatively high specific gravity of 6.1. When dissolved in nitric acid, it releases elemental sulfur. When arsenopyrite is heated, it produces sulfur and arsenic vapor. With 46% arsenic content, arsenopyrite, along with orpiment, is a principal ore of arsenic. When deposits of arsenopyrite become exposed to the atmosphere, the mineral slowly converts into iron arsenates. Arsenopyrite is generally an acid-consuming sulfide mineral, unlike iron pyrite which can lead to acid mine drainage. The crystal habit, hardness, density, and garlic odour when struck are diagnostic. Arsenopyrite in older literature may be referred to as ''mispickel'', a name of German origin. Arsenopyrite also can be associated with significant amounts of gold. Consequently, it serves as an indicator of gold bearing reefs. Many arsenopyrite gold ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |