Back Action (quantum)
   HOME
*





Back Action (quantum)
In quantum mechanics, back action refers to the effect of a detector on a measurement. Ideally, a detector should have no influence on the quantity it is measuring. However, in quantum systems it is sometimes the case that back action by the detector is an inherent feature of the system, and not just a result of the detector being imperfect. Back action has important consequences for the measurement process, and is a significant factor in measurements near quantum limits, such as measurements approaching the Standard Quantum Limit A quantum limit in physics is a limit on measurement accuracy at quantum scales. Depending on the context, the limit may be absolute (such as the Heisenberg limit), or it may only apply when the experiment is conducted with naturally occurring qua ... (SQL). Back action is an area of active research. Recent experiments with nanomechanical systems have attempted to evade back action while making measurements. References Quantum mechanics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Detector
A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends the information to other electronics, frequently a computer processor. Sensors are always used with other electronics. Sensors are used in everyday objects such as touch-sensitive elevator buttons (tactile sensor) and lamps which dim or brighten by touching the base, and in innumerable applications of which most people are never aware. With advances in micromachinery and easy-to-use microcontroller platforms, the uses of sensors have expanded beyond the traditional fields of temperature, pressure and flow measurement, for example into MARG sensors. Analog sensors such as potentiometers and force-sensing resistors are still widely used. Their applications include manufacturing and machinery, airplanes and aerospace, cars, medicine, robot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum System
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Limit
A quantum limit in physics is a limit on measurement accuracy at quantum scales. Depending on the context, the limit may be absolute (such as the Heisenberg limit), or it may only apply when the experiment is conducted with naturally occurring quantum states (e.g. the standard quantum limit in interferometry) and can be circumvented with advanced state preparation and measurement schemes. The usage of the term standard quantum limit or SQL is, however, broader than just interferometry. In principle, any linear measurement of a quantum mechanical observable of a system under study that does not commute with itself at different times leads to such limits. In short, it is the Heisenberg uncertainty principle that is the cause. A more detailed explanation would be that any measurement in quantum mechanics involves at least two parties, an Object and a Meter. The former is the system whose observable, say \hat x, we want to measure. The latter is the system we couple to the Object in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Limit
A quantum limit in physics is a limit on measurement accuracy at quantum scales. Depending on the context, the limit may be absolute (such as the Heisenberg limit), or it may only apply when the experiment is conducted with naturally occurring quantum states (e.g. the standard quantum limit in interferometry) and can be circumvented with advanced state preparation and measurement schemes. The usage of the term standard quantum limit or SQL is, however, broader than just interferometry. In principle, any linear measurement of a quantum mechanical observable of a system under study that does not commute with itself at different times leads to such limits. In short, it is the Heisenberg uncertainty principle that is the cause. A more detailed explanation would be that any measurement in quantum mechanics involves at least two parties, an Object and a Meter. The former is the system whose observable, say \hat x, we want to measure. The latter is the system we couple to the Object in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nanomechanics
Nanomechanics is a branch of ''nanoscience'' studying fundamental ''mechanical'' (elastic, thermal and kinetic) properties of physical systems at the nanometer scale. Nanomechanics has emerged on the crossroads of biophysics, classical mechanics, solid-state physics, statistical mechanics, materials science, and quantum chemistry. As an area of nanoscience, nanomechanics provides a scientific foundation of nanotechnology. Nanomechanics is that branch of nanoscience which deals with the study and application of fundamental mechanical properties of physical systems at the nanoscale, such as elastic, thermal and kinetic material properties. Often, nanomechanics is viewed as a ''branch'' of nanotechnology, i.e., an applied area with a focus on the mechanical properties of ''engineered'' nanostructures and nanosystems (systems with nanoscale components of importance). Examples of the latter include nanomachines, nanoparticles, nanopowders, nanowires, nanorods, nanoribbons, nanotubes, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]