B Spline
   HOME
*



picture info

B Spline
In the mathematical subfield of numerical analysis, a B-spline or basis spline is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition. Any spline function of given degree can be expressed as a linear combination of B-splines of that degree. Cardinal B-splines have knots that are equidistant from each other. B-splines can be used for curve-fitting and numerical differentiation of experimental data. In computer-aided design and computer graphics, spline functions are constructed as linear combinations of B-splines with a set of control points. Introduction The term "B-spline" was coined by Isaac Jacob Schoenberg and is short for basis spline. A spline function of order n is a piecewise polynomial function of degree n - 1 in a variable x. The places where the pieces meet are known as knots. The key property of spline functions is that they and their derivatives may be continuous, depending on the multiplicities of the knots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

B-spline Curve
In the mathematical subfield of numerical analysis, a B-spline or basis spline is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition. Any spline function of given degree can be expressed as a linear combination of B-splines of that degree. Cardinal B-splines have knots that are equidistant from each other. B-splines can be used for curve-fitting and numerical differentiation of experimental data. In computer-aided design and computer graphics, spline functions are constructed as linear combinations of B-splines with a set of control points. Introduction The term "B-spline" was coined by Isaac Jacob Schoenberg and is short for basis spline. A spline function of order n is a piecewise polynomial function of degree n - 1 in a variable x. The places where the pieces meet are known as knots. The key property of spline functions is that they and their derivatives may be continuous, depending on the multiplicities of the knots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Basis Function
In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors. In numerical analysis and approximation theory, basis functions are also called blending functions, because of their use in interpolation: In this application, a mixture of the basis functions provides an interpolating function (with the "blend" depending on the evaluation of the basis functions at the data points). Examples Monomial basis for ''Cω'' The monomial basis for the vector space of analytic functions is given by \. This basis is used in Taylor series, amongst others. Monomial basis for polynomials The monomial basis also forms a basis for the vector space of polynomials. After all, every polynomial can be written as a_0 + a_1x^1 + a_2x^2 + \cdots + a_n x^n for some n \in \mathb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curve Fitting
Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors. Fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more variables. Extrapolation refers to the use of a fitted curve beyond the range of the observed data, and is subject to a degree of uncertainty since it may reflect the method used to construct the curve as much as it reflects the observed data. For linear-algebraic analysis o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irwin–Hall Distribution
In probability and statistics, the Irwin–Hall distribution, named after Joseph Oscar Irwin and Philip Hall, is a probability distribution for a random variable defined as the sum of a number of independent random variables, each having a uniform distribution. For this reason it is also known as the uniform sum distribution. The generation of pseudo-random numbers having an approximately normal distribution is sometimes accomplished by computing the sum of a number of pseudo-random numbers having a uniform distribution; usually for the sake of simplicity of programming. Rescaling the Irwin–Hall distribution provides the exact distribution of the random variates being generated. This distribution is sometimes confused with the Bates distribution, which is the mean (not sum) of ''n'' independent random variables uniformly distributed from 0 to 1. Definition The Irwin–Hall distribution is the continuous probability distribution for the sum of ''n'' independent and identically ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Domain
In physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how much of the signal lies within each given frequency band over a range of frequencies. A frequency-domain representation can also include information on the phase shift that must be applied to each sinusoid in order to be able to recombine the frequency components to recover the original time signal. A given function or signal can be converted between the time and frequency domains with a pair of mathematical operators called transforms. An example is the Fourier transform, which converts a time function into a complex valued sum or integral of sine waves of different frequencies, with amplitudes and phases, each of which represents a frequency component. The "spectrum" of f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sinc
In mathematics, physics and engineering, the sinc function, denoted by , has two forms, normalized and unnormalized.. In mathematics, the historical unnormalized sinc function is defined for by \operatornamex = \frac. Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(''x''). In digital signal processing and information theory, the normalized sinc function is commonly defined for by \operatornamex = \frac. In either case, the value at is defined to be the limiting value \operatorname0 := \lim_\frac = 1 for all real . The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of ). As a further useful property, the zeros of the normalized sinc function are the nonzero integer values of . The normalized sinc function is the Fourier transform of the rectangular function with no scaling. It is used in the concept ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divided Difference
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. Divided differences is a recursive division process. Given a sequence of data points (x_0, y_0),\ldots,(x_, y_), the method calculates the coefficients of the interpolation polynomial of these points in the Newton form. Definition Given ''n'' + 1 data points :(x_0, y_0),\ldots,(x_, y_) where the x_k are assumed to be pairwise distinct, the forward divided differences are defined as: : _k:= y_k, \qquad k \in \ : _k,\ldots,y_:= \frac, \qquad k\in\,\ j\in\. To make the recursive process of computation clearer, the divided differences can be put in tabular form, where the columns correspond to the value of ''j'' above, and each entry in the table is computed from the difference of the entries to its immediate lower ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




De Boor's Algorithm
In the mathematical subfield of numerical analysis de Boor's algorithmC. de Boor 971 "Subroutine package for calculating with B-splines", Techn.Rep. LA-4728-MS, Los Alamos Sci.Lab, Los Alamos NM; p. 109, 121. is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves. The algorithm was devised by Carl R. de Boor. Simplified, potentially faster variants of the de Boor algorithm have been created but they suffer from comparatively lower stability. Introduction A general introduction to B-splines is given in the main article. Here we discuss de Boor's algorithm, an efficient and numerically stable scheme to evaluate a spline curve \mathbf(x) at position x . The curve is built from a sum of B-spline functions B_(x) multiplied with potentially vector-valued constants \mathbf_i , called control points, : \mathbf(x) = \sum_i \mathbf_i B_(x). B-splines of order p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Support (mathematics)
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Function
A triangular function (also known as a triangle function, hat function, or tent function) is a function whose graph takes the shape of a triangle. Often this is an isosceles triangle of height 1 and base 2 in which case it is referred to as ''the'' triangular function. Triangular functions are useful in signal processing and ''communication systems engineering'' as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which more realistic signals can be derived, for example in kernel density estimation. It also has applications in pulse-code modulation as a pulse shape for transmitting digital signals and as a matched filter for receiving the signals. It is also used to define the triangular window sometimes called the Bartlett window. Definitions The most common definition is as a piecewise function: : \begin \operatorname(x) = \Lambda(x) \ &\overset \ \max\big(1 - , x, , 0\big) \\ &= \begin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]