B-coloring
In graph theory, a b-coloring of a graph is a coloring of the vertices where each color class contains a vertex that has a neighbor in all other color classes. The b-chromatic number of a ''G'' graph is the largest b(G) positive integer that the ''G'' graph has a b-coloring with b(G) number of colors. Victor Campos, Carlos Lima és Ana SilvaV. Campos, C. Lima, A. Silva: "b-coloring graphs with girth at least 8." The Seventh European Conference on Combinatorics, Graph Theory and Applications. Scuola Normale Superiore (2013). used the relation between b-coloring and a graph's smallest cycle to partly prove the Erdős–Faber–Lovász conjecture In graph theory, the Erdős–Faber–Lovász conjecture is a problem about graph coloring, named after Paul Erdős, Vance Faber, and László Lovász, who formulated it in 1972.. It says: :If complete graphs, each having exactly vertices, have .... References Graph coloring ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph B Coloring Example
Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discrete mathematics *Graph of a function *Graph of a relation *Graph paper *Chart, a means of representing data (also called a graph) Computing *Graph (abstract data type), an abstract data type representing relations or connections *graph (Unix), Unix command-line utility *Conceptual graph, a model for knowledge representation and reasoning Other uses * HMS ''Graph'', a submarine of the UK Royal Navy See also *Complex network *Graf *Graff (other) *Graph database *Grapheme, in linguistics *Graphemics *Graphic (other) *-graphy (suffix from the Greek for "describe," "write" or "draw") *List of information graphics software *Statistical graphics Statistical graphics, also known as statistical graphical techniques, are graphic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph (discrete Mathematics)
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a Set (mathematics), set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle (graph Theory)
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an ''acyclic graph''. A directed graph without directed cycles is called a ''directed acyclic graph''. A connected graph without cycles is called a ''tree''. Definitions Circuit and cycle * A circuit is a non-empty trail in which the first and last vertices are equal (''closed trail''). : Let be a graph. A circuit is a non-empty trail with a vertex sequence . * A cycle or simple circuit is a circuit in which only the first and last vertices are equal. Directed circuit and directed cycle * A directed circuit is a non-empty directed trail in which the first and last vertices are equal (''closed directed trail''). : Let be a directed graph. A directed circuit is a non-empty directed trail with a vertex sequence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erdős–Faber–Lovász Conjecture
In graph theory, the Erdős–Faber–Lovász conjecture is a problem about graph coloring, named after Paul Erdős, Vance Faber, and László Lovász, who formulated it in 1972.. It says: :If complete graphs, each having exactly vertices, have the property that every pair of complete graphs has at most one shared vertex, then the union of the graph (discrete mathematics), graphs can be properly colored with colors. A proof of the conjecture for all sufficiently large values of was announced in 2021 by Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus. Equivalent formulations introduced the problem with a story about seating assignment in committees: suppose that, in a university department, there are committees, each consisting of faculty members, and that all committees meet in the same room, which has chairs. Suppose also that at most one person belongs to the intersection of any two committees. Is it possible to assign the committee mem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |