B.L. Van Der Waerden
   HOME
*





B.L. Van Der Waerden
Bartel Leendert van der Waerden (; 2 February 1903 – 12 January 1996) was a Dutch mathematician and historian of mathematics. Biography Education and early career Van der Waerden learned advanced mathematics at the University of Amsterdam and the University of Göttingen, from 1919 until 1926. He was much influenced by Emmy Noether at Göttingen, Germany. Amsterdam awarded him a Ph.D. for a thesis on algebraic geometry, supervised by Hendrick de Vries. Göttingen awarded him the habilitation in 1928. In that year, at the age of 25, he accepted a professorship at the University of Groningen. In his 27th year, Van der Waerden published his ''Moderne Algebra'', an influential two-volume treatise on abstract algebra, still cited, and perhaps the first treatise to treat the subject as a comprehensive whole. This work systematized an ample body of research by Emmy Noether, David Hilbert, Richard Dedekind, and Emil Artin. In the following year, 1931, he was appointed profe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amsterdam
Amsterdam ( , , , lit. ''The Dam on the River Amstel'') is the Capital of the Netherlands, capital and Municipalities of the Netherlands, most populous city of the Netherlands, with The Hague being the seat of government. It has a population of 907,976 within the city proper, 1,558,755 in the City Region of Amsterdam, urban area and 2,480,394 in the Amsterdam metropolitan area, metropolitan area. Located in the Provinces of the Netherlands, Dutch province of North Holland, Amsterdam is colloquially referred to as the "Venice of the North", for its large number of canals, now designated a World Heritage Site, UNESCO World Heritage Site. Amsterdam was founded at the mouth of the Amstel River that was dammed to control flooding; the city's name derives from the Amstel dam. Originally a small fishing village in the late 12th century, Amsterdam became a major world port during the Dutch Golden Age of the 17th century, when the Netherlands was an economic powerhouse. Amsterdam is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Van Der Waerden's Theorem
Van der Waerden's theorem is a theorem in the branch of mathematics called Ramsey theory. Van der Waerden's theorem states that for any given positive integers ''r'' and ''k'', there is some number ''N'' such that if the integers are colored, each with one of ''r'' different colors, then there are at least ''k'' integers in arithmetic progression whose elements are of the same color. The least such ''N'' is the Van der Waerden number ''W''(''r'', ''k''), named after the Dutch mathematician B. L. van der Waerden. Example For example, when ''r'' = 2, you have two colors, say and . ''W''(2, 3) is bigger than 8, because you can color the integers from like this: and no three integers of the same color form an arithmetic progression. But you can't add a ninth integer to the end without creating such a progression. If you add a , then the , , and are in arithmetic progression. Alternatively, if you add a , then the , , and are in arithmetic progression. In fact, there is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moderne Algebra
''Moderne Algebra'' is a two-volume German textbook on graduate abstract algebra by , originally based on lectures given by Emil Artin in 1926 and by from 1924 to 1928. The English translation of 1949–1950 had the title ''Modern algebra'', though a later, extensively revised edition in 1970 had the title ''Algebra''. The book was one of the first textbooks to use an abstract axiomatic approach to groups, rings, and fields, and was by far the most successful, becoming the standard reference for graduate algebra for several decades. It "had a tremendous impact, and is widely considered to be the major text on algebra in the twentieth century." In 1975 van der Waerden described the sources he drew upon to write the book. In 1997 Saunders Mac Lane recollected the book's influence: * Upon its publication it was soon clear that this was the way that algebra should be presented. * Its simple but austere style set the pattern for mathematical texts in other subjects, from Banach al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Habilitation
Habilitation is the highest university degree, or the procedure by which it is achieved, in many European countries. The candidate fulfills a university's set criteria of excellence in research, teaching and further education, usually including a dissertation. The degree, abbreviated "Dr. habil." (Doctor habilitatus) or "PD" (for "Privatdozent"), is a qualification for professorship in those countries. The conferral is usually accompanied by a lecture to a colloquium as well as a public inaugural lecture. History and etymology The term ''habilitation'' is derived from the Medieval Latin , meaning "to make suitable, to fit", from Classical Latin "fit, proper, skillful". The degree developed in Germany in the seventeenth century (). Initially, habilitation was synonymous with "doctoral qualification". The term became synonymous with "post-doctoral qualification" in Germany in the 19th century "when holding a doctorate seemed no longer sufficient to guarantee a proficient transfer o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Germany
Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second most populous country in Europe after Russia, and the most populous member state of the European Union. Germany is situated between the Baltic and North seas to the north, and the Alps to the south; it covers an area of , with a population of almost 84 million within its 16 constituent states. Germany borders Denmark to the north, Poland and the Czech Republic to the east, Austria and Switzerland to the south, and France, Luxembourg, Belgium, and the Netherlands to the west. The nation's capital and most populous city is Berlin and its financial centre is Frankfurt; the largest urban area is the Ruhr. Various Germanic tribes have inhabited the northern parts of modern Germany since classical antiquity. A region named Germania was documented before AD 100. In 962, the Kingdom of Germany formed the bulk of the Holy Roman Empire. During the 16th ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Göttingen
Göttingen (, , ; nds, Chöttingen) is a college town, university city in Lower Saxony, central Germany, the Capital (political), capital of Göttingen (district), the eponymous district. The River Leine runs through it. At the end of 2019, the population was 118,911. General information The origins of Göttingen lay in a village called ''Gutingi, ''first mentioned in a document in 953 AD. The city was founded northwest of this village, between 1150 and 1200 AD, and adopted its name. In Middle Ages, medieval times the city was a member of the Hanseatic League and hence a wealthy town. Today, Göttingen is famous for its old university (''Georgia Augusta'', or University of Göttingen, "Georg-August-Universität"), which was founded in 1734 (first classes in 1737) and became the most visited university of Europe. In 1837, seven professors protested against the absolute sovereignty of the House of Hanover, kings of Kingdom of Hanover, Hanover; they lost their positions, but be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Emmy Noether
Amalie Emmy NoetherEmmy is the ''Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noether'' (1907/08, NR. 2988); reproduced in: ''Emmy Noether, Gesammelte Abhandlungen – Collected Papers,'' ed. N. Jacobson 1983; online facsimile aphysikerinnen.de/noetherlebenslauf.html). Sometimes ''Emmy'' is mistakenly reported as a short form for ''Amalie'', or misreported as "Emily". e.g. (, ; ; 23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She discovered Noether's First and Second Theorem, which are fundamental in mathematical physics. She was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important woman in the history of mathematics. As one of the leading mathematicians of her time, she developed some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Mathematics
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars. The earliest mathematical texts available are from Mesopotamia and Egypt – '' Plimpton 322'' ( Babylonian c. 2000 – 1900 BC), the ''Rhind Mathematical Papyrus'' ( Egyptian c. 1800 BC) and the '' Moscow Mathematical Papyrus'' (Egyptian c. 1890 BC). All of these texts mention the so-called Pythagorean triples, so, by inference, the Pythagorean theorem seems to be the most anci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History One of the earliest known mathematicians were Thales of Miletus (c. 624–c.546 BC); he has been hailed as the first true mathematician and the first known individual to whom a mathematical discovery has been attributed. He is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. The number of known mathematicians grew when Pythagoras of Samos (c. 582–c. 507 BC) established the Pythagorean School, whose doctrine it was that mathematics ruled the universe and whose motto was "All is number". It was the Pythagoreans who coined the term "mathematics", and with whom the study of mathematics for its own sake begins. The first woman mathematician recorded by history was Hypati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Progression Game
The arithmetic progression game is a positional game where two players alternately pick numbers, trying to occupy a complete arithmetic progression of a given size. The game is parameterized by two integers ''n'' > ''k''. The game-board is the set . The winning-sets are all the arithmetic progressions of length ''k''. In a Maker-Breaker game variant, the first player (Maker) wins by occupying a ''k''-length arithmetic progression, otherwise the second player (Breaker) wins. The game is also called the van der Waerden game, named after Van der Waerden's theorem. It says that, for any ''k'', there exists some integer ''W''(2,''k'') such that, if the integers are partitioned arbitrarily into two sets, then at least one set contains an arithmetic progression of length ''k''. This means that, if n \geq W(2,k), then Maker has a winning strategy. Unfortunately, this claim is not constructive - it does not show a specific strategy for Maker. Moreover, the current upper bound for ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]