Atiyah–Hirzebruch Spectral Sequence
   HOME
*





Atiyah–Hirzebruch Spectral Sequence
In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by in the special case of topological K-theory. For a CW complex X and a generalized cohomology theory E^\bullet, it relates the generalized cohomology groups : E^i(X) with 'ordinary' cohomology groups H^j with coefficients in the generalized cohomology of a point. More precisely, the E_2 term of the spectral sequence is H^p(X;E^q(pt)), and the spectral sequence converges conditionally to E^(X). Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where E=H_. It can be derived from an exact couple that gives the E_1 page of the Serre spectral sequence, except with the ordinary cohomology groups replaced with E. In detail, assume X to be the total space of a Serre fibration with fibre F and base space B. The filtration of B by its n-skeletons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-skeleton
In mathematics, particularly in algebraic topology, the of a topological space presented as a simplicial complex (resp. CW complex) refers to the subspace that is the union of the simplices of (resp. cells of ) of dimensions In other words, given an inductive definition of a complex, the is obtained by stopping at the . These subspaces increase with . The is a discrete space, and the a topological graph. The skeletons of a space are used in obstruction theory, to construct spectral sequences by means of filtrations, and generally to make inductive arguments. They are particularly important when has infinite dimension, in the sense that the do not become constant as In geometry In geometry, a of P (functionally represented as skel''k''(''P'')) consists of all elements of dimension up to ''k''. For example: : skel0(cube) = 8 vertices : skel1(cube) = 8 vertices, 12 edges : skel2(cube) = 8 vertices, 12 edges, 6 square faces For simplicial sets The above def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dennis Sullivan
Dennis Parnell Sullivan (born February 12, 1941) is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the City University of New York Graduate Center and is a distinguished professor at Stony Brook University. Sullivan was awarded the Wolf Prize in Mathematics in 2010 and the Abel Prize in 2022. Early life and education Sullivan was born in Port Huron, Michigan, on February 12, 1941.. His family moved to Houston soon afterwards. He entered Rice University to study chemical engineering but switched his major to mathematics in his second year after encountering a particularly motivating mathematical theorem. The change was prompted by a special case of the uniformization theorem, according to which, in his own words: He received his Bachelor of Arts degree from Rice in 1963. He obtained his Doctor of Philosophy from Princeton University in 1966 with his thesis, ''Triangulating h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Morgan (mathematician)
John Willard Morgan (born March 21, 1946) is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University. Life Morgan received his B.A. in 1968 and Ph.D. in 1969, both from Rice University. His Ph.D. thesis, entitled ''Stable tangential homotopy equivalences'', was written under the supervision of Morton L. Curtis. He was an instructor at Princeton University from 1969 to 1972, and an assistant professor at MIT from 1972 to 1974. He has been on the faculty at Columbia University since 1974, serving as the Chair of the Department of Mathematics from 1989 to 1991 and becoming Professor Emeritus in 2010. Morgan is a member of the Simons Center for Geometry and Physics at Stony Brook University and served as its founding director from 2009 to 2016. From 1974 to 1976, Morgan was a Sloan Research Fellow. In 2008, he was awarde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Phillip Griffiths
Phillip Augustus Griffiths IV (born October 18, 1938) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He was a major developer in particular of the theory of variation of Hodge structure in Hodge theory and moduli theory. He also worked on partial differential equations, coauthored with Shiing-Shen Chern, Robert Bryant and Robert Gardner on Exterior Differential Systems. Professional career He received his BS from Wake Forest College in 1959 and his PhD from Princeton University in 1962 after completing a doctoral dissertation, titled "On certain homogeneous complex manifolds", under the supervision of Donald Spencer. Afterwards, he held positions at University of California, Berkeley (1962–1967) and Princeton University (1967–1972). Griffiths was a professor of mathematics at Harvard University from 1972 to 1983. He was then a Provost and James B. Duke Professor o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pierre Deligne
Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal. Early life and education Deligne was born in Etterbeek, attended school at Athénée Adolphe Max and studied at the Université libre de Bruxelles (ULB), writing a dissertation titled ''Théorème de Lefschetz et critères de dégénérescence de suites spectrales'' (Theorem of Lefschetz and criteria of degeneration of spectral sequences). He completed his doctorate at the University of Paris-Sud in Orsay 1972 under the supervision of Alexander Grothendieck, with a thesis titled ''Théorie de Hodge''. Career Starting in 1972, Deligne worked with Grothendieck at the Institut des Hautes Études Scientifiques (IHÉS) near Paris, initially on the generalization within scheme theory of Zariski's main theorem. In 196 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Homotopy Theory
In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by and . This simplification of homotopy theory makes certain calculations much easier. Rational homotopy types of simply connected spaces can be identified with (isomorphism classes of) certain algebraic objects called Sullivan minimal models, which are commutative differential graded algebras over the rational numbers satisfying certain conditions. A geometric application was the theorem of Sullivan and Micheline Vigué-Poirrier (1976): every simply connected closed Riemannian manifold ''X'' whose rational cohomology ring is not generated by one element has infinitely many geometrically distinct closed geodesics. The proof used rational homotopy theory to show that the Betti numbers of the free loop space of ''X'' are unbounded. The theorem then follows from a 1969 r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Massey Product
In algebraic topology, the Massey product is a cohomology operation of higher order introduced in , which generalizes the cup product. The Massey product was created by William S. Massey, an American algebraic topologist. Massey triple product Let a,b,c be elements of the cohomology algebra H^*(\Gamma) of a differential graded algebra \Gamma. If ab=bc=0, the Massey product \langle a,b,c\rangle is a subset of H^n(\Gamma), where n=\deg(a)+\deg(b)+\deg(c)-1. The Massey product is defined algebraically, by lifting the elements a,b,c to equivalence classes of elements u,v,w of \Gamma, taking the Massey products of these, and then pushing down to cohomology. This may result in a well-defined cohomology class, or may result in indeterminacy. Define \bar u to be (-1)^u. The cohomology class of an element u of \Gamma will be denoted by /math>. The Massey triple product of three cohomology classes is defined by : \langle rangle = \. The Massey product of three cohomology classes is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtered Algebra
In mathematics, a filtered algebra is a generalization of the notion of a graded algebra. Examples appear in many branches of mathematics, especially in homological algebra and representation theory. A filtered algebra over the field k is an algebra (A,\cdot) over k that has an increasing sequence \ \subseteq F_0 \subseteq F_1 \subseteq \cdots \subseteq F_i \subseteq \cdots \subseteq A of subspaces of A such that :A=\bigcup_ F_ and that is compatible with the multiplication in the following sense: : \forall m,n \in \mathbb,\quad F_m\cdot F_n\subseteq F_. Associated graded algebra In general there is the following construction that produces a graded algebra out of a filtered algebra. If A is a filtered algebra then the ''associated graded algebra'' \mathcal(A) is defined as follows: The multiplication is well-defined and endows \mathcal(A) with the structure of a graded algebra, with gradation \_. Furthermore if A is associative then so is \mathcal(A). Also if A is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Filtration (algebra)
In mathematics, a filtration \mathcal is an indexed family (S_i)_ of subobjects of a given algebraic structure S, with the index i running over some totally ordered index set I, subject to the condition that ::if i\leq j in I, then S_i\subseteq S_j. If the index i is the time parameter of some stochastic process, then the filtration can be interpreted as representing all historical but not future information available about the stochastic process, with the algebraic structure S_i gaining in complexity with time. Hence, a process that is adapted to a filtration \mathcal is also called non-anticipating, because it cannot "see into the future". Sometimes, as in a filtered algebra, there is instead the requirement that the S_i be subalgebras with respect to some operations (say, vector addition), but not with respect to other operations (say, multiplication) that satisfy only S_i \cdot S_j \subseteq S_, where the index set is the natural numbers; this is by analogy with a graded alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra. Discovery and motivation Motivated by problems in algebraic topology, Jean Leray introduced the notion of a sheaf (mathematics), sheaf and found himself faced with the problem of computing sheaf cohomology. To compute sheaf cohomology, Leray introduced a computational technique now known as the Leray spectral sequence. This gave a relation between cohomology groups of a sheaf and cohomology groups of the direct image of a sheaf, pushforward of the sheaf. The relation involved an infinite process. Leray found that the cohomology groups of the pushforward formed a natural chain complex, so that he could take the cohomolo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Serre Fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation:^ Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called bas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]