Atiyah–Hirzebruch Spectral Sequence
   HOME





Atiyah–Hirzebruch Spectral Sequence
In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by in the special case of topological K-theory. For a CW complex X and a generalized cohomology theory E^\bullet, it relates the generalized cohomology groups : E^i(X) with 'ordinary' cohomology groups H^j with coefficients in the generalized cohomology of a point. More precisely, the E_2 term of the spectral sequence is H^p(X;E^q(pt)), and the spectral sequence converges conditionally to E^(X). Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where E=H_. It can be derived from an exact couple that gives the E_1 page of the Serre spectral sequence, except with the ordinary cohomology groups replaced with E. In detail, assume X to be the total space of a Serre fibration with fibre F and base space B. The filtration of B by its n-skel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtered Algebra
In mathematics, a filtered algebra is a generalization of the notion of a graded algebra. Examples appear in many branches of mathematics, especially in homological algebra and representation theory. A filtered algebra over the field k is an algebra (A,\cdot) over k that has an increasing sequence \ \subseteq F_0 \subseteq F_1 \subseteq \cdots \subseteq F_i \subseteq \cdots \subseteq A of subspaces of A such that :A=\bigcup_ F_ and that is compatible with the multiplication in the following sense: : \forall m,n \in \mathbb,\quad F_m\cdot F_n\subseteq F_. Associated graded algebra In general, there is the following construction that produces a graded algebra out of a filtered algebra. If A is a filtered algebra, then the '' associated graded algebra'' \mathcal(A) is defined as follows: The multiplication is well-defined and endows \mathcal(A) with the structure of a graded algebra, with gradation \_. Furthermore if A is associative then so is \mathcal(A). Also, if A is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dennis Sullivan
Dennis Parnell Sullivan (born February 12, 1941) is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the Graduate Center of the City University of New York and is a distinguished professor at Stony Brook University. Sullivan was awarded the Wolf Prize in Mathematics in 2010 and the Abel Prize in 2022. Early life and education Sullivan was born in Port Huron, Michigan, on February 12, 1941.. His family moved to Houston soon afterwards. He entered Rice University to study chemical engineering but switched his major to mathematics in his second year after encountering a particularly motivating mathematical theorem. The change was prompted by a special case of the uniformization theorem, according to which, in his own words: He received his Bachelor of Arts degree from Rice University in 1963. He obtained his Doctor of Philosophy from Princeton University in 1966 with hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Morgan (mathematician)
John Willard Morgan (born March 21, 1946) is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University. Life Morgan received his B.A. in 1968 and Ph.D. in 1969, both from Rice University. His Ph.D. thesis, entitled ''Stable tangential homotopy equivalences'', was written under the supervision of Morton L. Curtis. He was an instructor at Princeton University from 1969 to 1972, and an assistant professor at MIT from 1972 to 1974. He has been on the faculty at Columbia University since 1974, serving as the Chair of the Department of Mathematics from 1989 to 1991 and becoming Professor Emeritus in 2010. Morgan is a member of the Simons Center for Geometry and Physics at Stony Brook University and served as its founding director from 2009 to 2016. From 1974 to 1976, Morgan was a Sloan Research Fellow. In 2008, he was awarded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Phillip Griffiths
Phillip Augustus Griffiths IV (born October 18, 1938) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He is a major developer in particular of the theory of variation of Hodge structure in Hodge theory and moduli theory, which forms part of transcendental algebraic geometry and which also touches upon major and distant areas of differential geometry. He also worked on partial differential equations, coauthored with Shiing-Shen Chern, Robert Bryant and Robert Gardner on Exterior Differential Systems. Professional career He received his BS from Wake Forest College in 1959 and his PhD from Princeton University in 1962 after completing a doctoral dissertation, titled "On certain homogeneous complex manifolds", under the supervision of Donald Spencer. Afterwards, he held positions at University of California, Berkeley (1962–1967) and Princeton University (1967–1972). Griffi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pierre Deligne
Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal. Early life and education Deligne was born in Etterbeek, attended school at Athénée Adolphe Max and studied at the Université libre de Bruxelles (ULB), writing a dissertation titled ''Théorème de Lefschetz et critères de dégénérescence de suites spectrales'' (Theorem of Lefschetz and criteria of degeneration of spectral sequences). He completed his doctorate at the University of Paris-Sud in Orsay 1972 under the supervision of Alexander Grothendieck, with a thesis titled ''Théorie de Hodge''. Career Starting in 1965, Deligne worked with Grothendieck at the Institut des Hautes Études Scientifiques (IHÉS) near Paris, initially on the generalization within scheme theory of Zariski's main theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Homotopy Theory
In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by and . This simplification of homotopy theory makes certain calculations much easier. Rational homotopy types of simply connected spaces can be identified with (isomorphism classes of) certain algebraic objects called Sullivan minimal models, which are commutative differential graded algebras over the rational numbers satisfying certain conditions. A geometric application was the theorem of Sullivan and Micheline Vigué-Poirrier (1976): every simply connected closed Riemannian manifold ''X'' whose rational cohomology ring is not generated by one element has infinitely many geometrically distinct closed geodesics. The proof used rational homotopy theory to show that the Betti numbers of the free loop space of ''X'' are unbounded. The theorem then follows from a 1969 result ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Massey Product
In algebraic topology, the Massey product is a cohomology operation of higher order introduced in , which generalizes the cup product. The Massey product was created by William S. Massey, an American algebraic topologist. Massey triple product Let a,b,c be elements of the cohomology algebra H^*(\Gamma) of a differential graded algebra \Gamma. If ab=bc=0, the Massey product \langle a,b,c\rangle is a subset of H^n(\Gamma), where n=\deg(a)+\deg(b)+\deg(c)-1. The Massey product is defined algebraically, by lifting the elements a,b,c to equivalence classes of elements u,v,w of \Gamma, taking the Massey products of these, and then pushing down to cohomology. This may result in a well-defined cohomology class, or may result in indeterminacy. Define \bar u to be (-1)^u. The cohomology class of an element u of \Gamma will be denoted by /math>. The Massey triple product of three cohomology classes is defined by : \langle rangle = \. The Massey product of three cohomology classes i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological K-theory
In mathematics, topological -theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological -theory is due to Michael Atiyah and Friedrich Hirzebruch. Definitions Let be a compact Hausdorff space and k= \R or \Complex. Then K_k(X) is defined to be the Grothendieck group of the commutative monoid of isomorphism classes of finite-dimensional -vector bundles over under Whitney sum. Tensor product of bundles gives -theory a commutative ring structure. Without subscripts, K(X) usually denotes complex -theory whereas real -theory is sometimes written as KO(X). The remaining discussion is focused on complex -theory. As a first example, note that the -theory of a point is the integers. This is because vector bundles over a point are trivial and thus classified by their rank and the Grothendieck group of the nat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




N-skeleton
In mathematics, particularly in algebraic topology, the of a topological space presented as a simplicial complex (resp. CW complex) refers to the subspace that is the union of the simplices of (resp. cells of ) of dimensions In other words, given an inductive definition of a complex, the is obtained by stopping at the . These subspaces increase with . The is a discrete space, and the a topological graph. The skeletons of a space are used in obstruction theory, to construct spectral sequences by means of filtrations, and generally to make inductive arguments. They are particularly important when has infinite dimension, in the sense that the do not become constant as In geometry In geometry, a of P (functionally represented as skel''k''(''P'')) consists of all elements of dimension up to ''k''. For example: : skel0(cube) = 8 vertices : skel1(cube) = 8 vertices, 12 edges : skel2(cube) = 8 vertices, 12 edges, 6 square faces For simplicial sets The above ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra. Discovery and motivation Motivated by problems in algebraic topology, Jean Leray introduced the notion of a sheaf and found himself faced with the problem of computing sheaf cohomology. To compute sheaf cohomology, Leray introduced a computational technique now known as the Leray spectral sequence. This gave a relation between cohomology groups of a sheaf and cohomology groups of the pushforward of the sheaf. The relation involved an infinite process. Leray found that the cohomology groups of the pushforward formed a natural chain complex, so that he could take the cohomology of the cohomology. This was still not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Filtration (algebra)
In mathematics, a filtration \mathcal is, informally, like a set of ever larger Russian dolls, each one containing the previous ones, where a "doll" is a subobject of an algebraic structure. Formally, a filtration is an indexed family (S_i)_ of subobjects of a given algebraic structure S, with the index i running over some totally ordered index set I, subject to the condition that ::if i\leq j in I, then S_i\subseteq S_j. If the index i is the time parameter of some stochastic process, then the filtration can be interpreted as representing all historical but not future information available about the stochastic process, with the algebraic structure S_i gaining in complexity with time. Hence, a process that is adapted to a filtration \mathcal is also called non-anticipating, because it cannot "see into the future". Sometimes, as in a filtered algebra, there is instead the requirement that the S_i be subalgebras with respect to some operations (say, vector addition), but not wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]