Arcminute Microkelvin Imager
   HOME
*



picture info

Arcminute Microkelvin Imager
The Arcminute Microkelvin Imager (AMI) consists of a pair of interferometric radio telescopes - the Small and Large Arrays - located at the Mullard Radio Astronomy Observatory near Cambridge. AMI was designed, built and is operated by the Cavendish Astrophysics Group. AMI was designed, primarily, for the study of galaxy clusters by observing secondary anisotropies in the cosmic microwave background (CMB) arising from the Sunyaev–Zel'dovich (SZ) effect. Both arrays are used to observe radiation with frequencies between 12 and 18 GHz, and have very similar system designs. The telescopes are used to observe both previously known galaxy clusters, in an attempt to determine, for example, their masses and temperatures, and to carry out surveys, in order to locate previously undiscovered clusters. AMI Large Array The AMI Large Array (AMI LA) is composed of eight 12.8-metre-diameter, equatorially mounted parabolic antennas, which were previously part of the Ryle Telescope. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interferometry
Interferometry is a technique which uses the ''interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy (and its applications to chemistry), quantum mechanics, nuclear and particle physics, plasma physics, remote sensing, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms. Interferometers are devices that extract information from interference. They are widely used in science and industry for the measurement of microscopic displacements, refractive index changes and surface irregularities. In the case with most interferometers, light from a single source is split into two beams that travel in different optical paths, which are then combined again to produce interfer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Barton Radio Telescopes In Silhouette Against A November Sun (geograph 6700698)
Barton may refer to: Places Australia * Barton, Australian Capital Territory, a suburb of Canberra * Division of Barton, an electoral district in New South Wales * Barton, Victoria, a locality near Moyston Canada * Barton, Newfoundland and Labrador, community * Barton, Nova Scotia, a community * Barton Mine, an abandoned mine in Temagami, Ontario * Barton Street (Hamilton, Ontario) England * Barton, Cambridgeshire, a village and civil parish * Barton, Cheshire, a village and parish * Barton, Cumbria, a hamlet and civil parish * Barton, Gloucestershire, a village * Barton, Isle of Wight * Barton, Preston, a linear village and parish in Lancashire * Barton, North Yorkshire, a village and parish * Barton, Oxfordshire, a suburb of Oxford * Barton, Warwickshire, a village * Barton, West Lancashire, a village * Barton Broad, a Broad and nature reserve in Norfolk * Barton-upon-Humber, a town in Lincolnshire * Barton upon Irwell, Greater Manchester Scotland * Dumbarton, West Dunba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supernova Remnant
A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar material it sweeps up and shocks along the way. There are two common routes to a supernova: either a massive star may run out of fuel, ceasing to generate fusion energy in its core, and collapsing inward under the force of its own gravity to form a neutron star or a black hole; or a white dwarf star may accrete material from a companion star until it reaches a critical mass and undergoes a thermonuclear explosion. In either case, the resulting supernova explosion expels much or all of the stellar material with velocities as much as 10% the speed of light (or approximately 30,000 km/s). These speeds are highly supersonic, so a strong shock wave forms ahead of the ejecta. That heats the upstream plasma up to temperatures well above mi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arcminute Microkelvin Imager Small Array
A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The nautical mile (nmi) was originally defined as the arc length of a minute of latitude on a spherical Earth, so the actual Earth circumference is very near . A minute of arc is of a radian. A second of arc, arcsecond (arcsec), or arc second, denoted by the symbol , is of an arcminute, of a degree, of a turn, and (about ) of a radian. These units originated in Babylonian astronomy as sexagesimal subdivisions of the degree; they are used in fields that involve very small angles, such as astronomy, optometry, ophthalmology, optics, navigation, land surveying, and marksmanship. To express even smaller angles, standard SI prefixes can be employed; the milliarcsecond (mas) and microarcsecond (μas), for instance, are commonly used in astrono ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ninth Cambridge Survey At 15GHz
The 9C survey at 15 GHz (9C) is an astronomical catalogue generated from the radio observations of the Ninth Cambridge survey at 15 GHz. It was published in 2003 by the Cavendish Astrophysics Group of the University of Cambridge. The catalogue was originally made in order to locate radio sources which were interfering with observations using the Very Small Array, but the catalogue has also proved useful for other astronomical programs. Sources are labelled 9CJHHMM+DDMM where ''HHMM+DDMM'' are the coordinates in the J2000 In astronomy, an epoch or reference epoch is a instant, moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a Astronomical object, celestial body, ... system, e.g. 9CJ1510+4138. References * * External linksArticle describing the 9C survey at 15GHzOnline data access to the 9C survey at 15GHz 9 {{astronomical-catalogue-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jansky
The jansky (symbol Jy, plural ''janskys'') is a non- SI unit of spectral flux density, or spectral irradiance, used especially in radio astronomy. It is equivalent to 10−26 watts per square metre per hertz. The ''flux density'' or ''monochromatic flux'', , of a source is the integral of the spectral radiance, , over the source solid angle: :S = \iint\limits_\text B(\theta,\phi) \,\mathrm\Omega. The unit is named after pioneering US radio astronomer Karl Guthe Jansky and is defined as :1~\mathrm = 10^~\mathrm\mathrm\mathrm ( SI) :1~\mathrm = 10^~\mathrm\mathrm\mathrm\mathrm ( cgs). Since the jansky is obtained by integrating over the whole source solid angle, it is most simply used to describe point sources; for example, the Third Cambridge Catalogue of Radio Sources (3C) reports results in janskys. * For extended sources, the surface brightness is often described with units of janskys per solid angle; for example, far-infrared (FIR) maps from the IRAS satellite are in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Source Counts
The source counts distribution of radio-sources from a radio-astronomical survey is the cumulative distribution of the number of sources (''N'') brighter than a given flux density (''S''). As it is usually plotted on a log-log scale its distribution is known as the log ''N'' – log ''S'' plot. It is one of several cosmological tests that were conceived in the 1930s to check the viability of and compare new cosmological models. Early work to catalogue radio sources aimed to determine the source count distribution as a discriminating test of different cosmological models. For example, a uniform distribution of radio sources at low redshift, such as might be found in a 'steady-state Euclidean universe,' would produce a slope of −1.5 in the cumulative distribution of log(''N'') versus log(''S''). Data from the early Cambridge 2C survey (published 1955) apparently implied a (log(''N''), log(''S'')) slope of nearly −3.0. This appeared to invalidate the steady state t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radio Galaxy
A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wavelengths between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process. The observed structure in radio emission is determined by the interaction between twin jets and the external medium, modified by the effects of relativistic beaming. The host galaxies are almost exclusively large elliptical galaxies. ''Radio-loud'' active galaxies can be detected at large distances, making them valuable tools for observational cosmology. Recently, much work has been done on the effects of these objects on the intergalactic medium, particularly in galaxy groups and clusters. Alcyoneus is a low-excitation radio galaxy, identified as having the largest radio lobes found, with lobed structures spanning 5 megaparsecs (16×1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Radio Source
An astronomical radio source is an object in outer space that emits strong radio waves. Radio emission comes from a wide variety of sources. Such objects are among the most extreme and energetic physical processes in the universe. History In 1932, American physicist and radio engineer Karl Jansky detected radio waves coming from an unknown source in the center of our galaxy. Jansky was studying the origins of radio frequency interference for Bell Laboratories. He found "...a steady hiss type static of unknown origin", which eventually he concluded had an extraterrestrial origin. This was the first time that radio waves were detected from outer space. The first radio sky survey was conducted by Grote Reber and was completed in 1941. In the 1970s, some stars in our galaxy were found to be radio emitters, one of the strongest being the unique binary MWC 349. Sources: solar system The Sun As the nearest star, the Sun is the brightest radiation source in most frequencies, down to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minute Of Arc
A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The nautical mile (nmi) was originally defined as the arc length of a minute of latitude on a spherical Earth, so the actual Earth circumference is very near . A minute of arc is of a radian. A second of arc, arcsecond (arcsec), or arc second, denoted by the symbol , is of an arcminute, of a degree, of a turn, and (about ) of a radian. These units originated in Babylonian astronomy as sexagesimal subdivisions of the degree; they are used in fields that involve very small angles, such as astronomy, optometry, ophthalmology, optics, navigation, land surveying, and marksmanship. To express even smaller angles, standard SI prefixes can be employed; the milliarcsecond (mas) and microarcsecond (μas), for instance, are commonly used in ast ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angular Resolution
Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. It is used in optics applied to light waves, in antenna theory applied to radio waves, and in acoustics applied to sound waves. The colloquial use of the term "resolution" sometimes causes confusion; when an optical system is said to have a high resolution or high angular resolution, it means that the perceived distance, or actual angular distance, between resolved neighboring objects is small. The value that quantifies this property, ''θ,'' which is given by the Rayleigh criterion, is low for a system with a high resolution. The closely related term spatial resolution refers to the precision of a measurement with respect to space, which is directly connected to angular resolution in imaging instruments. The Rayleigh criterion shows th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]