Approximation Problem
   HOME
*





Approximation Problem
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved question ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fredholm Integral Equation
In mathematics, the Fredholm integral equation is an integral equation whose solution gives rise to Fredholm theory, the study of Fredholm kernels and Fredholm operators. The integral equation was studied by Ivar Fredholm. A useful method to solve such equations, the Adomian decomposition method, is due to George Adomian. Equation of the first kind A Fredholm equation is an integral equation in which the term containing the kernel function (defined below) has constants as integration limits. A closely related form is the Volterra integral equation which has variable integral limits. An inhomogeneous Fredholm equation of the first kind is written as and the problem is, given the continuous kernel function K and the function g, to find the function f. An important case of these types of equation is the case when the kernel is a function only of the difference of its arguments, namely K(t,s)=K(ts), and the limits of integration are ±∞, then the right hand side of the equat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjoint
In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoint or adjunction may mean: * Adjoint of a linear map, also called its transpose * Hermitian adjoint (adjoint of a linear operator) in functional analysis * Adjoint endomorphism of a Lie algebra * Adjoint representation of a Lie group * Adjoint functors in category theory * Adjunction (field theory) * Adjunction formula (algebraic geometry) * Adjunction space in topology * Conjugate transpose of a matrix in linear algebra * Adjugate matrix, related to its inverse * Adjoint equation * The upper and lower adjoints of a Galois connection in order theory * The adjoint of a differential operator with general polynomial coefficients * Kleisli adjunction * Monoidal adjunction * Quillen adjunction * Axiom of adjunction In mathematical set theory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is a right inverse of . (An identity element is an element such that and for all and for which the left-hand sides are defined.) When the operation is associative, if an element has both a left inverse and a right inverse, then these two inverses are equal and unique; they are called the ''inverse element'' or simply the ''inverse''. Often an adjective is added for specifying the operation, such as in additive inverse, multiplicative inverse, and functional inverse. In this case (associative operation), an invertible element is an element that has an inverse. Inverses are commonly used in groupswhere every element is invertible, and ringswhere invertible elements are also called units. They are also commonly used for operations that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strictly Singular
In functional analysis, a branch of mathematics, a strictly singular operator is a bounded linear operator between normed spaces which is not bounded below on any infinite-dimensional subspace. Definitions. Let ''X'' and ''Y'' be normed linear spaces, and denote by ''B(X,Y)'' the space of bounded operators of the form T:X\to Y. Let A\subseteq X be any subset. We say that ''T'' is bounded below on A whenever there is a constant c\in(0,\infty) such that for all x\in A, the inequality \, Tx\, \geq c\, x\, holds. If ''A=X'', we say simply that ''T'' is bounded below. Now suppose ''X'' and ''Y'' are Banach spaces, and let Id_X\in B(X) and Id_Y\in B(Y) denote the respective identity operators. An operator T\in B(X,Y) is called inessential whenever Id_X-ST is a Fredholm operator for every S\in B(Y,X). Equivalently, ''T'' is inessential if and only if Id_Y-TS is Fredholm for every S\in B(Y,X). Denote by \mathcal(X,Y) the set of all inessential operators in B(X,Y). An operator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Identity Operator
Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an American slasher film * ''Identity'' (game show), an American game show * ''Identity'' (TV series), a British police procedural drama television series * "Identity" (''Arrow''), a 2013 episode * "Identity" (''Burn Notice''), a 2007 episode * "Identity" (''Charlie Jade''), a 2005 episode * "Identity" (''Legend of the Seeker''), a 2008 episode * "Identity" (''Law & Order: Special Victims Unit'' episode), 2005 * "Identity" (''NCIS: Los Angeles''), a 2009 pilot episode Music Albums * ''Identity'' (3T album), 2004 * ''Identity'' (BoA album), 2010 * ''Identity'' (Far East Movement album), 2016 * ''Identity'' (Robert Pierre album), 2008 * ''Identity'' (Raghav album), 2008 * ''Identity'' (Victon EP), 2017 * ''Identity'' (Zee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Norm
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its . Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Introduction and definition Given two normed vector spaces V and W (over the same base field, either the real numbers \R or the complex numbers \Complex), a linear map A : V \to W is continuous if and only if there exists a real number c such that \, Av\, \leq c \, v\, \quad \mbox v\in V. The norm on the left is the one in W and the norm on the right is the one in V. Intuitively, the continuous operator A never increases the length of any vector by more than a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of A, one can take the infimum of the numbers c such that the above i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Totally Bounded Space
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size” (where the meaning of “size” depends on the structure of the ambient space). The term precompact (or pre-compact) is sometimes used with the same meaning, but precompact is also used to mean relatively compact. These definitions coincide for subsets of a complete metric space, but not in general. In metric spaces A metric space (M,d) is ''totally bounded'' if and only if for every real number \varepsilon > 0, there exists a finite collection of open balls in ''M'' of radius \varepsilon whose union contains . Equivalently, the metric space ''M'' is totally bounded if and only if for every \varepsilon >0, there exists a finite cover such that the radius of each element of the cover is at most \varepsilon. This is equivale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE