Antiprotonic Helium
   HOME
*



picture info

Antiprotonic Helium
Antiprotonic helium is a three-body atom composed of an antiproton and an electron orbiting around a helium nucleus. It is thus made partly of matter, and partly of antimatter. The atom is electrically neutral, since both electrons and antiprotons each have a charge of −1, whereas helium nuclei have a charge of +2. It has the longest lifetime of any experimentally producible matter-antimatter bound state. Production These exotic atoms can be produced by simply mixing antiprotons with ordinary helium gas; the antiproton spontaneously removes one of the two electrons contained in a normal helium atom in a chemical reaction, and then begins to orbit the helium nucleus in the electron's place. This will happen in the case of approximately 3% of the antiprotons introduced to the helium gas. The antiproton's orbit, which has a large principal quantum number and angular momentum quantum number of around 38, lies far away from the surface of the helium nucleus. The antiproton can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time
Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions. Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars. Nevertheless, diverse fields such as business, industry, sports, the sciences, and the performing arts all incorporate some notion of time into their respective measuring systems. 108 pages. Time in physics is operationally defined as "what a clock reads". The physical nature of time is addre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Physics
Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned with the way in which electrons are arranged around the nucleus and the processes by which these arrangements change. This comprises ions, neutral atoms and, unless otherwise stated, it can be assumed that the term ''atom'' includes ions. The term ''atomic physics'' can be associated with nuclear power and nuclear weapons, due to the synonymous use of ''atomic'' and ''nuclear'' in standard English. Physicists distinguish between atomic physics—which deals with the atom as a system consisting of a nucleus and electrons—and nuclear physics, which studies nuclear reactions and special properties of atomic nuclei. As with many scientific fields, strict delineation can be highly contrived and atomic physics is often considered in the wider c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antimatter
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Theoretically, a particle and its antiparticle (for example, a proton and an antiproton) have the same mass, but opposite electric charge, and other differences in quantum numbers. A collision between any particle and its anti-particle partner leads to their mutual annihilation, giving rise to various proportions of intense photons (gamma rays), neutrin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protonium
Protonium (symbol: Pn), also known as antiprotonic hydrogen, is a type of exotic atom in which a proton (symbol: p) and an antiproton (symbol: ) orbit each other. Since protonium is a bound system of a particle and its corresponding antiparticle, it is an example of a type of exotic atom called an onium. Protonium has a mean lifetime of approximately 1.0 μs and a binding energy of −0.75  keV. Like all onia, protonium is a boson with all quantum numbers ( baryon number, flavour quantum numbers, etc.) and electrical charge equal to 0. Production There are two known methods to generate protonium. One method involves violent particle collisions. The other method involves putting antiprotons and protons into the same magnetic cage. The latter method was first used during the experiment ATHENA (ApparaTus for High precision Experiment on Neutral Antimatter) at the CERN laboratory in Geneva in 2002, but it was not until 2006 that scientists realized protoniu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Positronium
Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two particles annihilate each other to predominantly produce two or three gamma-rays, depending on the relative spin states. The energy levels of the two particles are similar to that of the hydrogen atom (which is a bound state of a proton and an electron). However, because of the reduced mass, the frequency, frequencies of the spectral lines are less than half of those for the corresponding hydrogen lines. States The mass of positronium is 1.022 MeV, which is twice the electron mass minus the binding energy of a few eV. The lowest energy orbital state of positronium is 1S, and like with hydrogen, it has a hyperfine structure arising from the relative orientations of the spins of the electron and the positron. The Singlet state, ''singlet' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Jump
A quantum jump is the abrupt transition of a quantum system (atom, molecule, atomic nucleus) from one quantum state to another, from one energy level to another. When the system absorbs energy, there is a transition to a higher energy level (excitation); when the system loses energy, there is a transition to a lower energy level. The concept was introduced by Niels Bohr, in his 1913 Bohr model. A quantum jump is a phenomenon that is peculiar to quantum systems and distinguishes them from classical systems, where any transitions are performed gradually. In quantum mechanics, such jumps are associated with the non-unitary evolution of a quantum-mechanical system during measurement. A quantum jump can be accompanied by the emission or absorption of photons; energy transfer during a quantum jump can also occur by non-radiative resonant energy transfer or in collisions with other particles. In modern physics, the concept of a quantum jump is rarely used; as a rule scientists speak ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions and decaying after a mean lifetime of 26.033 nanoseconds ( seconds), and the neutral pion decaying after a much shorter lifetime of 85  attoseconds ( seconds). Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays. The exchange of virtual pions, along with vector, rho and omega mesons, provides an explanation for the residual strong force between nucleons. Pions are not produced in radioactive decay, but commonly are in high-energy collisions between hadrons. Pions also result from some matter–antimatter annihilation events. All types of pions are also produced in natural processes wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Scherrer Institute
The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich and EPFL, PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation. The PSI employs around 2,100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI's research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics. PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2,500 researchers from 60 different countries came to PS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In physics, mass is not the same as weight, even though mass is often determined by measuring the object's weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon would weigh le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

BASE Experiment
BASE (Baryon Antibaryon Symmetry Experiment), AD-8, is a multinational collaboration at the Antiproton Decelerator facility at CERN, Geneva. The goal of the Japanese and German BASE collaboration are high-precision investigations of the fundamental properties of the antiproton, namely the charge-to-mass ratio and the magnetic moment. Experimental setup The single antiprotons are stored in an advanced Penning trap system, which has a multi-trap system at its core. It consists of a reservoir trap, a precision trap, an analysis trap and a cooling trap. The reservoir trap has the capability to store antiprotons for several years and allows BASE to operate experiments independent from accelerator cycles. The precision trap is for high precision frequency measurements, and the analysis trap has a strong magnetic field inhomogeneity superimposed, which is used for single particle spin flip spectroscopy. By measuring the spin flip rate as a function of the frequency of an externally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ATRAP
__FORCETOC__ The Antihydrogen Trap (ATRAP) collaboration at the Antiproton Decelerator facility at CERN, Geneva, is responsible for the AD-2 experiment. It is a continuation of the TRAP collaboration, which started taking data for the PS196 experiment in 1985. The TRAP experiment (PS196) pioneered cold antiprotons, cold positrons, and first made the ingredients of cold antihydrogen to interact. Later ATRAP members pioneered accurate hydrogen spectroscopy and observed the first hot antihydrogen atoms. Experimental setup ATRAP is a collaboration between physicists around the world with the goal of creating and experimenting with antihydrogen. ATRAP accumulates positrons emitted from a radioactive 22Na source. There are two effective ways to slow down the fast positrons by inelastic processes. The ATRAP collaboration initially chose a different method to ATHENA (AD-1). Slowing down and trapping positron The positrons which were emitted by the 22Na were first slowed down wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]