Alexander Polynomial
   HOME
*





Alexander Polynomial
In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial. Definition Let ''K'' be a knot in the 3-sphere. Let ''X'' be the infinite cyclic cover of the knot complement of ''K''. This covering can be obtained by cutting the knot complement along a Seifert surface of ''K'' and gluing together infinitely many copies of the resulting manifold with boundary in a cyclic manner. There is a covering transformation ''t'' acting on ''X''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Presentation Matrix
A presentation conveys information from a speaker to an audience. Presentations are typically demonstrations, introduction, lecture, or speech meant to inform, persuade, inspire, motivate, build goodwill, or present a new idea/product. Presentations usually require preparation, organization, event planning, writing, use of visual aids, dealing with stress, and answering questions. “The key elements of a presentation consists of presenter, audience, message, reaction and method to deliver speech for organizational success in an effective manner.” Presentations are widely used in tertiary work settings such as accountants giving a detailed report of a company's financials or an entrepreneur pitching their venture idea to investors. The term can also be used for a formal or ritualized introduction or offering, as with the presentation of a debutante. Presentations in certain formats are also known as keynote address. Interactive presentations, in which the audience is involved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Freedman
Michael Hartley Freedman (born April 21, 1951) is an American mathematician, at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional generalized Poincaré conjecture. Freedman and Robion Kirby showed that an exotic ℝ4 manifold exists. Life and career Freedman was born in Los Angeles, California, in the United States. His father, Benedict Freedman, was an American Jewish aeronautical engineer, musician, writer, and mathematician. His mother, Nancy Mars Freedman, performed as an actress and also trained as an artist. His parents cowrote a series of novels together. . He entered the University of California, Berkeley, but dropped out after two semesters. In the same year he wrote a letter to Ralph Fox, a Princeton professor at the time, and was admitted to graduate school so in 1968 he continued his studies at Princeton University where he received Ph.D. degree in 1973 fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topologically Slice
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a ''topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; connectedne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutator Subgroup
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Group
In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients (equivalently, its abelianization, which is the universal abelian quotient, is trivial). In symbols, a perfect group is one such that ''G''(1) = ''G'' (the commutator subgroup equals the group), or equivalently one such that ''G''ab = (its abelianization is trivial). Examples The smallest (non-trivial) perfect group is the alternating group ''A''5. More generally, any non-abelian simple group is perfect since the commutator subgroup is a normal subgroup with abelian quotient. Conversely, a perfect group need not be simple; for example, the special linear group over the field with 5 elements, SL(2,5) (or the binary icosahedral group, which is isomorphic to it) is perfect but not simple (it has a non-trivial center containing \left(\begin-1 & 0 \\ 0 & -1\end\right) = \left(\begin4 & 0 \\ 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poincaré Duality
In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if ''M'' is an ''n''-dimensional oriented closed manifold (compact and without boundary), then the ''k''th cohomology group of ''M'' is isomorphic to the (n-k)th homology group of ''M'', for all integers ''k'' :H^k(M) \cong H_(M). Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation. History A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The ''k''th and (n-k)th Betti numbers of a closed (i.e., compact and without boundary) orientable ''n''-manifold are equal. The ''cohomology'' concept was at that time about 40 y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ralph Fox
Ralph Hartzler Fox (March 24, 1913 – December 23, 1973) was an American mathematician. As a professor at Princeton University, he taught and advised many of the contributors to the ''Golden Age of differential topology'', and he played an important role in the modernization and main-streaming of knot theory. Biography Ralph Fox attended Swarthmore College for two years, while studying piano at the Leefson Conservatory of Music in Philadelphia. He earned a master's degree from Johns Hopkins University, and a PhD degree from Princeton University in 1939. His doctoral dissertation, ''On the Lusternick-Schnirelmann Category'', was directed by Solomon Lefschetz. (In later years he disclaimed all knowledge of the Lusternik–Schnirelmann category, and certainly never published on the subject again.) He directed 21 doctoral dissertations, including those of John Milnor, John Stallings, Francisco González-Acuña, Guillermo Torres-Diaz and Barry Mazur, and supervised Ken ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Seifert Matrix
In mathematics, a Seifert surface (named after German mathematician Herbert Seifert) is an orientable surface whose boundary is a given knot or link. Such surfaces can be used to study the properties of the associated knot or link. For example, many knot invariants are most easily calculated using a Seifert surface. Seifert surfaces are also interesting in their own right, and the subject of considerable research. Specifically, let ''L'' be a tame oriented knot or link in Euclidean 3-space (or in the 3-sphere). A Seifert surface is a compact, connected, oriented surface ''S'' embedded in 3-space whose boundary is ''L'' such that the orientation on ''L'' is just the induced orientation from ''S''. Note that any compact, connected, oriented surface with nonempty boundary in Euclidean 3-space is the Seifert surface associated to its boundary link. A single knot or link can have many different inequivalent Seifert surfaces. A Seifert surface must be oriented. It is possible to ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incidence Matrix
In mathematics, an incidence matrix is a logical matrix that shows the relationship between two classes of objects, usually called an incidence relation. If the first class is ''X'' and the second is ''Y'', the matrix has one row for each element of ''X'' and one column for each element of ''Y''. The entry in row ''x'' and column ''y'' is 1 if ''x'' and ''y'' are related (called ''incident'' in this context) and 0 if they are not. There are variations; see below. Graph theory Incidence matrix is a common graph representation in graph theory. It is different to an adjacency matrix, which encodes the relation of vertex-vertex pairs. Undirected and directed graphs In graph theory an undirected graph has two kinds of incidence matrices: unoriented and oriented. The ''unoriented incidence matrix'' (or simply ''incidence matrix'') of an undirected graph is a n\times m matrix ''B'', where ''n'' and ''m'' are the numbers of vertices and edges respectively, such that :B_=\left\{\begin{a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oriented
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable. A space is non-orientable if "clockwise" is changed into "counterclockwise" after running through some loops in it, and coming back to the starting point. This means that a geometric shape, such as , that moves continuously along such a loop is changed into its own mirror image . A Möbius strip is an example of a non-orientable space. Various equivalent formulations of orientability can be given, depending on the desired application and level of generality. Formulations applicable to general topological manifolds ofte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]