Abhyankar's Lemma
   HOME
*





Abhyankar's Lemma
In mathematics, Abhyankar's lemma (named after Shreeram Shankar Abhyankar) allows one to kill tame ramification by taking an extension of a base field. More precisely, Abhyankar's lemma states that if ''A'', ''B'', ''C'' are local fields such that ''A'' and ''B'' are finite extensions of ''C'', with ramification index, ramification indices ''a'' and ''b'', and ''B'' is tamely ramified over ''C'' and ''b'' divides ''a'', then the compositum ''AB'' is an unramified extension of ''A''. See also * Finite extensions of local fields References *. Theorem 3, page 504. *. *p. 279
* . Theorems in algebraic geometry Lemmas in algebra Algebraic number theory Theorems in abstract algebra {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abhyankar's Conjecture
In abstract algebra, Abhyankar's conjecture is a 1957 conjecture of Shreeram Abhyankar, on the Galois groups of algebraic function fields of characteristic ''p''. The soluble case was solved by Serre in 1990 and the full conjecture was proved in 1994 by work of Michel Raynaud and David Harbater.. The problem involves a finite group ''G'', a prime number ''p'', and the function field ''K(C)'' of a nonsingular integral algebraic curve ''C'' defined over an algebraically closed field ''K'' of characteristic ''p''. The question addresses the existence of a Galois extension ''L'' of ''K''(''C''), with ''G'' as Galois group, and with specified ramification. From a geometric point of view, ''L'' corresponds to another curve ''C''′, together with a morphism :π : ''C''′ → ''C''. Geometrically, the assertion that π is ramified at a finite set ''S'' of points on ''C'' means that π restricted to the complement of ''S'' in ''C'' is an étale morphism. This is in analo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shreeram Shankar Abhyankar
Shreeram Shankar Abhyankar (22 July 1930 – 2 November 2012) was an Indian American mathematician known for his contributions to algebraic geometry. He, at the time of his death, held the Marshall Distinguished Professor of Mathematics Chair at Purdue University, and was also a professor of computer science and industrial engineering. He is known for Abhyankar's conjecture of finite group theory. His latest research was in the area of computational and algorithmic algebraic geometry. Career Abhyankar was born in a Chitpavan Brahmin family in Ujjain, Madhya Pradesh, India. He earned his B.Sc. from Royal Institute of Science of University of Mumbai in 1951, his M.A. at Harvard University in 1952, and his Ph.D. at Harvard in 1955. His thesis, written under the direction of Oscar Zariski, was titled ''Local uniformization on algebraic surfaces over modular ground fields''. Before going to Purdue, he was an associate professor of mathematics at Cornell University and Johns Hopkin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tame Ramification
In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. In complex analysis In complex analysis, the basic model can be taken as the ''z'' → ''z''''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in Riemann surface theory, of ramification of order ''n''. It occurs for example in the Riemann–Hurwitz formula for the effect of mappings on the genus. See also branch point. In algebraic topology In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''''n'' mapping shows this as a local p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields. While Archimedean local fields have been quite well known in mathematics for at lea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finite Extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Definition and notation Suppose that ''E''/''F'' is a field extension. Then ''E'' may be considered as a vector space over ''F'' (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by :F The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly. An extension ''E''/''F'' is also sometimes said to be simply finite if it is a finite extension; this should not be confused with the fields themselves being finite fields (fields with finitely many elements). The degree should not be confused with the transcendence degree of a field; for example, the field Q(''X'') o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramification Index
In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. In complex analysis In complex analysis, the basic model can be taken as the ''z'' → ''z''''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in Riemann surface theory, of ramification of order ''n''. It occurs for example in the Riemann–Hurwitz formula for the effect of mappings on the genus. See also branch point. In algebraic topology In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''''n'' mapping shows this as a local p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compositum
In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field. Compositum of fields First, one defines the notion of the compositum of fields. This construction occurs frequently in field theory. The idea behind the compositum is to make the smallest field containing two other fields. In order to formally define the compositum, one must first specify a tower of fields. Let ''k'' be a field and ''L'' and ''K'' be two extensions of ''k''. The compositum, denoted ''K.L'', is defined to be K.L = k(K \cup L) wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Extensions Of Local Fields
In algebraic number theory, through completion, the study of ramification of a prime ideal can often be reduced to the case of local fields where a more detailed analysis can be carried out with the aid of tools such as ramification groups. In this article, a local field is non-archimedean and has finite residue field. Unramified extension Let L/K be a finite Galois extension of nonarchimedean local fields with finite residue fields \ell/k and Galois group G. Then the following are equivalent. *(i) L/K is unramified. *(ii) \mathcal_L / \mathfrak\mathcal_L is a field, where \mathfrak is the maximal ideal of \mathcal_K. *(iii) : K= ell : k/math> *(iv) The inertia subgroup of G is trivial. *(v) If \pi is a uniformizing element of K, then \pi is also a uniformizing element of L. When L/K is unramified, by (iv) (or (iii)), ''G'' can be identified with \operatorname(\ell/k), which is finite cyclic. The above implies that there is an equivalence of categories between the fini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Nachrichten
''Mathematische Nachrichten'' (abbreviated ''Math. Nachr.''; English: ''Mathematical News'') is a mathematical journal published in 12 issues per year by Wiley-VCH GmbH. It should not be confused with the ''Internationale Mathematische Nachrichten'', an unrelated publication of the Austrian Mathematical Society. It was established in 1948 by East German mathematician Erhard Schmidt, who became its first editor-in-chief. At that time it was associated with the German Academy of Sciences at Berlin, and published by Akademie Verlag. After the fall of the Berlin Wall, Akademie Verlag was sold to VCH Verlagsgruppe Weinheim, which in turn was sold to John Wiley & Sons. According to the 2020 edition of Journal Citation Reports, the journal had an impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]