AQUA@home
   HOME
*





AQUA@home
AQUA@home was a volunteer computing project operated by D-Wave Systems that ran on the Berkeley Open Infrastructure for Network Computing (BOINC) software platform. It ceased functioning in August 2011. Its goal was to predict the performance of superconducting adiabatic quantum computers on a variety of problems arising in fields ranging from materials science to machine learning. It designed and analyzed quantum computing algorithms, using Quantum Monte Carlo techniques. AQUA@home was the first BOINC project to provide multi-threaded applications. It was also the first project to deploy an OpenCL OpenCL (Open Computing Language) is a framework for writing programs that execute across heterogeneous platforms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-progra ... test application under BOINC. References External linksPapers resulting from AQUA@home's computations Science in so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

BOINC
The Berkeley Open Infrastructure for Network Computing (BOINC, pronounced – rhymes with "oink") is an open-source middleware system for volunteer computing (a type of distributed computing). Developed originally to support SETI@home, it became the platform for many other applications in areas as diverse as medicine, molecular biology, mathematics, linguistics, climatology, environmental science, and astrophysics, among others. The purpose of BOINC is to enable researchers to utilize processing resources of personal computers and other devices around the world. BOINC development began with a group based at the Space Sciences Laboratory (SSL) at the University of California, Berkeley, and led by David P. Anderson, who also led SETI@home. As a high-performance volunteer computing platform, BOINC brings together 34,236 active participants employing 136,341 active computers (hosts) worldwide, processing daily on average 20.164 PetaFLOPS (it would be the 21st largest processin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Berkeley Open Infrastructure For Network Computing
The Berkeley Open Infrastructure for Network Computing (BOINC, pronounced – rhymes with "oink") is an open-source middleware system for volunteer computing (a type of distributed computing). Developed originally to support SETI@home, it became the platform for many other applications in areas as diverse as medicine, molecular biology, mathematics, linguistics, climatology, environmental science, and astrophysics, among others. The purpose of BOINC is to enable researchers to utilize processing resources of personal computers and other devices around the world. BOINC development began with a group based at the Space Sciences Laboratory (SSL) at the University of California, Berkeley, and led by David P. Anderson, who also led SETI@home. As a high-performance volunteer computing platform, BOINC brings together 34,236 active participants employing 136,341 active computers (hosts) worldwide, processing daily on average 20.164 PetaFLOPS (it would be the 21st largest processing c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

D-Wave Systems
D-Wave Systems Inc. is a Canadian quantum computing company, based in Burnaby, British Columbia, Canada. D-Wave was the world's first company to sell computers to exploit quantum effects in their operation. D-Wave's early customers include Lockheed Martin, University of Southern California, Google/NASA and Los Alamos National Lab. In 2015, D-Wave's 2X Quantum Computer with more than 1,000 qubits was installed at the Quantum Artificial Intelligence Lab at NASA Ames Research Center. They have subsequently shipped systems with 2,048 qubits. In 2019, D-Wave announced a 5000-qubit system available mid-2020, using their new Pegasus chip with 15 connections per qubit. D-Wave does not implement a generic quantum computer; instead, their computers implement specialized quantum annealing. However, D-Wave announced plans in 2021 that they will work on universal gate-base quantum computers as well in the future. History D-Wave was founded by Haig Farris (former chair of board), Geordie R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volunteer Computing
Volunteer computing is a type of distributed computing in which people donate their computers' unused resources to a research-oriented project, and sometimes in exchange for credit points. The fundamental idea behind it is that a modern desktop computer is sufficiently powerful to perform billions of operations a second, but for most users only between 10-15% of its capacity is used. Typical uses like basic word processing or web browsing leave the computer mostly idle. The practice of volunteer computing, which dates back to the mid-1990s, can potentially make substantial processing power available to researchers at minimal cost. Typically, a program running on a volunteer's computer periodically contacts a research application to request jobs and report results. A middleware system usually serves as an intermediary. History The first volunteer computing project was the Great Internet Mersenne Prime Search, which was started in January 1996. It was followed in 1997 by distribute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Volunteer Computing
Volunteer computing is a type of distributed computing in which people donate their computers' unused resources to a research-oriented project, and sometimes in exchange for credit points. The fundamental idea behind it is that a modern desktop computer is sufficiently powerful to perform billions of operations a second, but for most users only between 10-15% of its capacity is used. Typical uses like basic word processing or web browsing leave the computer mostly idle. The practice of volunteer computing, which dates back to the mid-1990s, can potentially make substantial processing power available to researchers at minimal cost. Typically, a program running on a volunteer's computer periodically contacts a research application to request jobs and report results. A middleware system usually serves as an intermediary. History The first volunteer computing project was the Great Internet Mersenne Prime Search, which was started in January 1996. It was followed in 1997 by distribute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multithreading (computer Architecture)
In computer architecture, multithreading is the ability of a central processing unit (CPU) (or a single core in a multi-core processor) to provide multiple threads of execution concurrently, supported by the operating system. This approach differs from multiprocessing. In a multithreaded application, the threads share the resources of a single or multiple cores, which include the computing units, the CPU caches, and the translation lookaside buffer (TLB). Where multiprocessing systems include multiple complete processing units in one or more cores, multithreading aims to increase utilization of a single core by using thread-level parallelism, as well as instruction-level parallelism. As the two techniques are complementary, they are combined in nearly all modern systems architectures with multiple multithreading CPUs and with CPUs with multiple multithreading cores. Overview The multithreading paradigm has become more popular as efforts to further exploit instruction-level p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computing
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers may be too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Science In Society
Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence for scientific reasoning is tens of thousands of years old. The earliest written records in the history of science come from Ancient Egypt and Mesopotamia in around 3000 to 1200 BCE. Their contributions to mathematics, astronomy, and medicine entered and shaped Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes. After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Western Europe during the early centuries (400 to 1000 CE) of the Middle Ages, but was preserved in the Muslim world during the Islamic Golden Age and later by the efforts of Byzantine Greek scholars who brought Greek ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE