Axiom Of Pairing
In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of pairing is one of the axioms of Zermelo–Fraenkel set theory. It was introduced by as a special case of his axiom of elementary sets. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall A \, \forall B \, \exists C \, \forall D \, \in C \iff (D = A \lor D = B)/math> In words: :Given any object ''A'' and any object ''B'', there is a set ''C'' such that, given any object ''D'', ''D'' is a member of ''C'' if and only if ''D'' is equal to ''A'' or ''D'' is equal to ''B''. Consequences As noted, what the axiom is saying is that, given two objects ''A'' and ''B'', we can find a set ''C'' whose members are exactly ''A'' and ''B''. We can use the axiom of extensionality to show that this set ''C'' is unique. We call the set ''C'' the ''pair'' of ''A'' and ''B'', and denote it . Thus the essence of the axiom is: :Any tw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiomatic Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordered Pair
In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unordered pair'', denoted , always equals the unordered pair . Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered ''n''-tuples (ordered lists of ''n'' objects). For example, the ordered triple (''a'',''b'',''c'') can be defined as (''a'', (''b'',''c'')), i.e., as one pair nested in another. In the ordered pair (''a'', ''b''), the object ''a'' is called the ''first entry'', and the object ''b'' the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schema (logic)
In logic, the logical form of a statement is a precisely specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language. The logical form of an argument is called the argument form of the argument. History The importance of the concept of form to logic was already recognized in ancient times. Aristotle, in the '' Prior Analytics'', was one of the first people to employ variable letters to represent valid inferences. Therefore, Jan Łukasiewicz claims that the introduction of variables was "one of Aristotle's greatest inventions." ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the ''cardinality (or the cardinal number)'' of the set. A set that is not a finite set is called an '' infinite set''. For example, the set of all positive integers is infinite: Finite sets are particularly important in combinatorics, the mathematical study of counting. Many arguments involving finite sets rely on the pigeonhole principle, which states that there cannot exist an injective function from a larger finite set to a smaller finite set. Definition and terminology Formally, a set S is called finite if there exists a bijection for some natural number n (natural numbers are defined as sets in Zermelo-Fraenkel set theory). The number n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Union
An axiom, postulate, or assumption is a statement (logic), statement that is taken to be truth, true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so Self-evidence, evident or well-established, that it is accepted without controversy or question. In modern logic, an axiom is a premise or starting point for reasoning. In mathematics, an ''axiom'' may be a "#Logical axioms, logical axiom" or a "#Non-logical axioms, non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hereditarily Finite Set
In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set. Formal definition A recursive definition of well-founded hereditarily finite sets is as follows: : ''Base case'': The empty set is a hereditarily finite set. : ''Recursion rule'': If a_1,\dots a_k are hereditarily finite, then so is \. Only sets that can be built by a finite number of applications of these two rules are hereditarily finite. Representation This class of sets is naturally ranked by the number of bracket pairs necessary to represent the sets: * \ (i.e. \emptyset, the Neumann ordinal "0") * \ (i.e. \ or \, the Neumann ordinal "1") * \ * \ and then also \ (i.e. \, the Neumann ordinal "2"), * \, \ as well as \, * ... sets represented with 6 bracket pairs, e.g. \. There are six such sets * ... sets represented wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Adjunction
In mathematical set theory, the axiom of adjunction states that for any two sets ''x'', ''y'' there is a set ''w'' = ''x'' ∪ given by "adjoining" the set ''y'' to the set ''x''. It is stated as :\forall x. \forall y. \exists w. \forall z. \big( z \in w \leftrightarrow (z \in x \lor z=y) \big). introduced the axiom of adjunction as one of the axioms for a system of set theory that he introduced in about 1929. It is a weak axiom, used in some weak systems of set theory such as general set theory or finitary set theory. The adjunction operation is also used as one of the operations of primitive recursive set functions. Interpretability of arithmetic Tarski and Szmielew showed that Robinson arithmetic () can be interpreted in a weak set theory whose axioms are extensionality, the existence of the empty set, and the axiom of adjunction . In fact, empty set and adjunction alone (without extensionality) suffice to interpret . (They are mutually interpreta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Schema Of Separation
In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation (''Aussonderungsaxiom''), subset axiom, axiom of class construction, or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for ''unrestricted'' comprehension, discussed below. Because restricting comprehension avoided Russell's paradox, several mathematicians including Zermelo, Fraenkel, and Gödel considered it the most important axiom of set theory. Statement One instance of the schema is included for each formula \varphi in the language of set theory with free variables among ''x'', ''w''1, ..., ''w''''n'', ''A''. So ''B'' does not occur free in \varphi. In the formal language of set theory, the axiom schema is: :\forall w_1,\ldots,w_n \, \forall A \, \exists B \, \forall x ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Infinity
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908. Formal statement Using first-order logic primitive symbols, the axiom can be expressed as follows: \exist \mathrm \ (\exist o \ (o \in \mathrm \ \land \lnot \exist n \ (n \in o)) \ \land \ \forall x \ (x \in \mathrm \Rightarrow \exist y \ (y \in \mathrm \ \land \ \forall a \ (a \in y \Leftrightarrow (a \in x \ \lor \ a = x))))). If the notations of both set-builder and empty set are allowed: \exists \mathrm \, ( \varnothing \in \mathrm \, \land \, \forall x \, (x \in \mathrm \Rightarrow \, ( x \cup \ ) \in \mathrm ) ). Some mathematicians may call a set built this way an inductive set. Hint: In English, it reads: " There exists a set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Power Set
In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. It guarantees for every set x the existence of a set \mathcal(x), the power set of x, consisting precisely of the subsets of x. By the axiom of extensionality, the set \mathcal(x) is unique. The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity. Formal statement The subset relation \subseteq is not a primitive notion in formal set theory and is not used in the formal language of the Zermelo–Fraenkel axioms. Rather, the subset relation \subseteq is defined in terms of set membership, \in. Given this, in the formal language of the Zermelo–Fraenkel axioms, the axiom of power set reads: :\forall x \, \exists y \, \forall z \, \in y \iff \forall w \, (w \in z \Rightarrow w \in x)/math> where ''y'' is the power s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Empty Set
In axiomatic set theory, the axiom of empty set, also called the axiom of null set and the axiom of existence, is a statement that asserts the existence of a set with no elements. It is an axiom of Kripke–Platek set theory and the variant of general set theory that Burgess (2005) calls "ST," and a demonstrable truth in Zermelo set theory and Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ..., with or without the axiom of choice. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\exists A\, \forall x\, (x \notin A). Or, alternatively, \exists x\, \lnot \exists y\, (y \in x). In words: :Existential quantification, There is a Set (mathematics), set such that no element is a member of it. Interpretation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |