HOME
*



picture info

Avoider-Enforcer Game
An Avoider-Enforcer game (also called Avoider-Forcer game or Antimaker-Antibreaker game) is a kind of positional game. Like most positional games, it is described by a set of ''positions/points/elements'' (X) and a family of subsets (\mathcal), which are called here the ''losing-sets''. It is played by two players, called Avoider and Enforcer, who take turns picking elements until all elements are taken. Avoider wins if he manages to avoid taking a losing set; Enforcer wins if he manages to make Avoider take a losing set. A classic example of such a game is ''Sim''. There, the positions are all the edges of the complete graph on 6 vertices. Players take turns to shade a line in their color, and lose when they form a full triangle of their own color: the losing sets are all the triangles. Comparison to Maker-Breaker games The winning condition of an Avoider-Enforcer game is exactly the opposite of the winning condition of the Maker-Breaker game on the same \mathcal. Thus, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Positional Game
A positional game is a kind of a combinatorial game for two players. It is described by: *Xa finite set of elements. Often ''X'' is called the ''board'' and its elements are called ''positions''. *\mathcala family of subsets of X. These subsets are usually called the ''winning-sets''. * A criterion for winning the game. During the game, players alternately claim previously-unclaimed positions, until one of the players wins. If all positions in X are taken while no player wins, the game is considered a draw. The classic example of a positional game is Tic-tac-toe. In it, X contains the 9 squares of the game-board, \mathcal contains the 8 lines that determine a victory (3 horizontal, 3 vertical and 2 diagonal), and the winning criterion is: the first player who holds an entire winning-set wins. Other examples of positional games are Hex and the Shannon switching game. For every positional game there are exactly three options: either the first player has a winning strategy, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Family Of Sets
In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. The term "collection" is used here because, in some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class rather than a set. A finite family of subsets of a finite set S is also called a ''hypergraph''. The subject of extremal set theory concerns the largest and smallest examples of families of sets satisfying certain restrictions. Examples The set of all subsets of a given set S is called the power set of S and is denoted by \wp(S). The power set \wp(S) of a given set S is a family of sets over S. A subset of S having k elements is called a k-subset of S. The k-subsets S^ of a set S form a family of sets. Let S = \. An ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Graph K6
Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies that there are no "holes" in the real numbers * Complete metric space, a metric space in which every Cauchy sequence converges * Complete uniform space, a uniform space where every Cauchy net in converges (or equivalently every Cauchy filter converges) * Complete measure, a measure space where every subset of every null set is measurable * Completion (algebra), at an ideal * Completeness (cryptography) * Completeness (statistics), a statistic that does not allow an unbiased estimator of zero * Complete graph, an undirected graph in which every pair of vertices has exactly one edge connecting them * Complete category, a category ''C'' where every diagram from a small category to ''C'' has a limit; it is ''cocomplete'' if every such functor ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sim (pencil Game)
Sim is a pencil-and-paper game that is played by two players. Gameplay Six dots ('vertices') are drawn. Each dot is connected to every other dot by a line ('edge'). Two players take turns coloring any uncolored lines. One player colors in one color, and the other colors in another color, with each player trying to avoid the creation of a triangle made solely of their color (only triangles with the dots as corners count; intersections of lines are not relevant); the player who completes such a triangle loses immediately. Analysis Ramsey theory can also be used to show that no game of Sim can end in a tie. Specifically, since the '' Ramsey number'' ''R''(3,3)=6, any two-coloring of the complete graph on 6 vertices (K6) must contain a monochromatic triangle, and therefore is not a tied position. This will also apply to any super-graph of K6. For another proof that there must eventually be a triangle of either color, see the Theorem on friends and strangers. Computer search has v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Maker-Breaker Game
A Maker-Breaker game is a kind of positional game. Like most positional games, it is described by its set of ''positions/points/elements'' (X) and its family of ''winning-sets'' (\mathcal- a family of subsets of X). It is played by two players, called Maker and Breaker, who alternately take previously-untaken elements. In a Maker-Breaker game, Maker wins if he manages to hold all the elements of a winning-set, while Breaker wins if he manages to prevent this, i.e. to hold at least one element in each winning-set. Draws are not possible. In each Maker-Breaker game, either Maker or Breaker has a winning strategy. The main research question about these games is which of these two options holds. Examples A classic Maker-Breaker game is Hex. There, the winning-sets are all paths from the left side of the board to the right side. Maker wins by owning a connected path; Breaker wins by owning a connected path from top to bottom, since it blocks all connected paths from left to right. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Misère Game
Misère ( French for "destitution"), misere, bettel, betl, or (German for "beggar"; equivalent terms in other languages include , , ) is a bid in various card games, and the player who bids misère undertakes to win no tricks or as few as possible, usually at no trump, in the round to be played. This does not allow sufficient variety to constitute a game in its own right, but it is the basis of such trick-avoidance games as Hearts, and provides an optional contract for most games involving an auction. The term or category may also be used for some card game of its own with the same aim, like Black Peter. A misère bid usually indicates an extremely poor hand, hence the name. An open or lay down misère, or misère ouvert is a 500 bid where the player is so sure of losing every trick that they undertake to do so with their cards placed face-up on the table. Consequently, 'lay down misère' is Australian gambling slang for a predicted easy victory. In Skat, the bidding ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biased Positional Game
A biased positional game is a variant of a positional game. Like most positional games, it is described by a set of ''positions/points/elements'' (X) and a family of subsets (\mathcal), which are usually called the ''winning-sets''. It is played by two players who take turns picking elements until all elements are taken. While in the standard game each player picks one element per turn, in the biased game each player takes a different number of elements. More formally, for every two positive integers ''p'' and ''q'', a (p:q)-positional game is a game in which the first player picks ''p'' elements per turn and the second player picks ''q'' elements per turn. The main question of interest regarding biased positional games is what is their ''threshold bias'' - what is the bias in which the winning-power switches from one player to the other player. Example As an example, consider the ''triangle game''. In this game, the elements are all edges of a complete graph on ''n'' vertices, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]