HOME
*



picture info

Aufbau Principle
The aufbau principle , from the German ''Aufbauprinzip'' (building-up principle), also called the aufbau rule, states that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy, then they fill subshells of higher energy. For example, the 1s subshell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration for the phosphorus atom, meaning that the 1s subshell has 2 electrons, and so on. Electron behavior is elaborated by other principles of atomic physics, such as Hund's rule and the Pauli exclusion principle. Hund's rule asserts that if multiple orbitals of the same energy are available, electrons will occupy different orbitals singly and with the same spin before any are occupied doubly. If double occupation does occur, the Pauli exclusion principle requires that electrons that occupy the same orbital must have differ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ground State
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum. If more than one ground state exists, they are said to be degenerate. Many systems have degenerate ground states. Degeneracy occurs whenever there exists a unitary operator that acts non-trivially on a ground state and commutes with the Hamiltonian of the system. According to the third law of thermodynamics, a system at absolute zero temperature exists in its ground state; thus, its entropy is determined by the degeneracy of the ground state. Many systems, such as a perfect crystal lattice, have a unique ground state and therefore have zero entropy at absolute zero. It is also possible for the highest excited state to have absolute zero temper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Principal Quantum Number
In quantum mechanics, the principal quantum number (symbolized ''n'') is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from 1) making it a discrete variable. Apart from the principal quantum number, the other quantum numbers for bound electrons are the azimuthal quantum number ''ℓ'', the magnetic quantum number ''ml'', and the spin quantum number ''s''. Overview and history As ''n'' increases, the electron is also at a higher energy and is, therefore, less tightly bound to the nucleus. For higher ''n'' the electron is farther from the nucleus, on average. For each value of ''n'' there are ''n'' accepted ''ℓ'' (azimuthal) values ranging from 0 to ''n'' − 1 inclusively, hence higher-''n'' electron states are more numerous. Accounting for two states of spin, each ''n''- shell can accommodate up to 2''n''2 electrons. In a simplistic one-electron model described bel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Periodic Table
The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of chemistry. It is a graphic formulation of the periodic law, which states that the properties of the chemical elements exhibit an approximate periodic dependence on their atomic numbers. The table is divided into four roughly rectangular areas called blocks. The rows of the table are called periods, and the columns are called groups. Elements from the same group of the periodic table show similar chemical characteristics. Trends run through the periodic table, with nonmetallic character (keeping their own electrons) increasing from left to right across a period, and from down to up across a group, and metallic character (surrendering electrons to other atoms) increasing in the opposite direction. The underlying reason for these trends is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ionization
Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected. Uses Everyday examples of gas ionization are such as within a fluorescent lamp or other electrical discharge lamps. It is also used in radiation detectors such as the Geiger-Müller counter or the ionization chamber. The ionizati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Wiswesser
William Joseph Wiswesser (December 3, 1914 – December 17, 1989) was an American chemist best known as the creator of the Wiswesser line notation (WLN), which was an innovative way to represent chemical structures in a linear string of characters suitable for computer manipulation. He is also known for the Wiswesser rule, a mathematical formula which predicts the order of atomic orbitals in many-electron atoms. Education and career Wiswesser was born in Reading, Pennsylvania, to Louis and Hattie (Flatt) Wiswesser in 1914. He attended Reading High School, and graduated from Lehigh University with a B.S. degree in chemistry in 1936. Following graduation, he worked at Hercules, the Trojan Powder Company, and the Picatinny Arsenal. Wiswesser then served as an instructor of chemistry in the Cooper Union's School of Engineering during the 1940s. It was during this time that he published his 1945 paper describing a formula that correctly orders the subshells of atomic orbitals in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vsevolod Klechkovsky
Vsevolod Mavrikievich Klechkovsky (russian: Все́волод Маври́киевич Клечко́вский; also transliterated as Klechkovskii and Klechkowski; November 28, 1900 – May 2, 1972) was a Soviet and Russian agricultural chemist known for his work with radioisotopes. Biography He graduated in 1929 from the Moscow agricultural academy and worked there from 1930. He became a professor in 1955, and an academician of the All-Union Academy of Agricultural Sciences of the Soviet Union (known as VASKhNIL) in 1956. His use of isotopic labeling in the advance of soil chemistry led to his being considered a founder of agricultural radiology. He was one of the first to study plant nutrition using radioisotopes, for which he received the Stalin Prize in 1952 along with his academy co-workers. He studied the behavior of heavy nuclei daughter isotopes in soils. Following the 1957 Kyshtym disaster, Klechkovsky led the research projects studying the long-term effects of radioa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Charles Janet
Charles Janet (; 15 June 1849 – 7 February 1932) was a French engineer, company director, inventor and biologist. He is also known for his innovative ''left-step'' presentation of the periodic table of chemical elements. Life and work Janet graduated from the École des Mines and worked for some years in munitions. He then married the daughter of the owner of a manufacturing company and worked for it for the rest of his life, finding time for research in various branches of science. His collection of 40,000 fossils and other specimens was unfortunately dispersed after his death. His studies of the morphology of the head of ants, wasps and bees, and his micrographs were of remarkable quality. He also worked on plant biology and finally wrote a series of papers on evolution. He was a prolific inventor and designed much of his own equipment, including the formicarium, in which an ant colony is made visible by being formed between two panes of glass. In 1927 he turned his attention ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Erwin Madelung
Erwin Madelung (18 May 1881 – 1 August 1972) was a German physicist. He was born in 1881 in Bonn. His father was the surgeon Otto Wilhelm Madelung. He earned a doctorate in 1905 from the University of Göttingen, specializing in crystal structure, and eventually became a professor. It was during this time he developed the Madelung constant, which characterizes the net electrostatic effects of all ions in a crystal lattice, and is used to determine the energy of one ion. In 1921 he succeeded Max Born as the Chair of Theoretical Physics at the Goethe University Frankfurt, which he held until his retirement in 1949. He specialized in atomic physics and quantum mechanics, and it was during this time he developed the Madelung equations, an alternative form of the Schrödinger equation. He is also known for the Madelung rule, which states that atomic orbitals are filled in order of increasing n + l quantum numbers. Publications * ''Magnetisierung durch schnell verlaufende Stromvorg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atomic Orbitals As Triangles
Atomic may refer to: * Of or relating to the atom, the smallest particle of a chemical element that retains its chemical properties * Atomic physics, the study of the atom * Atomic Age, also known as the "Atomic Era" * Atomic scale, distances comparable to the dimensions of an atom * Atom (order theory), in mathematics * Atomic (cocktail), a champagne cocktail * ''Atomic'' (magazine), an Australian computing and technology magazine * Atomic Skis, an Austrian ski producer Music * Atomic (band), a Norwegian jazz quintet * ''Atomic'' (Lit album), 2001 * ''Atomic'' (Mogwai album), 2016 * ''Atomic'', an album by Rockets, 1982 * ''Atomic'' (EP), by , 2013 * "Atomic" (song), by Blondie, 1979 * "Atomic", a song by Tiger Army from '' Tiger Army III: Ghost Tigers Rise'' See also * * * Atom (other) * Atomicity (database systems) * Nuclear (other) * Atomism, philosophy about the basic building blocks of reality * Atomic City (other) * Atomic formula, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aufbau Principle
The aufbau principle , from the German ''Aufbauprinzip'' (building-up principle), also called the aufbau rule, states that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy, then they fill subshells of higher energy. For example, the 1s subshell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration for the phosphorus atom, meaning that the 1s subshell has 2 electrons, and so on. Electron behavior is elaborated by other principles of atomic physics, such as Hund's rule and the Pauli exclusion principle. Hund's rule asserts that if multiple orbitals of the same energy are available, electrons will occupy different orbitals singly and with the same spin before any are occupied doubly. If double occupation does occur, the Pauli exclusion principle requires that electrons that occupy the same orbital must have differ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force. The diameter of the nucleus is in the range of () for hydrogen (the diameter of a single proton) to about for uranium. These dimensions are much smaller than the diameter of the atom itself (nucleus + electron cloud), by a factor of about 26,634 (uranium atomic radiu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]