Associated Legendre Functions
In physical science and mathematics, the Legendre functions , and associated Legendre functions , , and Legendre functions of the second kind, , are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles. Legendre's differential equation The general Legendre equation reads \left(1 - x^2\right) y'' - 2xy' + \left lambda(\lambda+1) - \frac\righty = 0, where the numbers and may be complex, and are called the degree and order of the relevant function, respectively. The polynomial solutions when is an integer (denoted ), and are the Legendre polynomials ; and when is an integer (denoted ), and is also an integer with are the associated Legendre polynomials ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Legendre Polynomials
In physical science and mathematics, Legendre polynomials (named after Adrien-Marie Legendre, who discovered them in 1782) are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions. Definition by construction as an orthogonal system In this approach, the polynomials are defined as an orthogonal system with respect to the weight function w(x) = 1 over the interval 1,1/math>. That is, P_n(x) is a polynomial of degree n, such that \int_^1 P_m(x) P_n(x) \,dx = 0 \quad \text n \ne m. With the additional standardization co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associated Legendre Polynomials
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation \left(1 - x^2\right) \frac P_\ell^m(x) - 2 x \frac P_\ell^m(x) + \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0, or equivalently \frac \left \left(1 - x^2\right) \frac P_\ell^m(x) \right+ \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0, where the indices ''ℓ'' and ''m'' (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on only if ''ℓ'' and ''m'' are integers with 0 ≤ ''m'' ≤ ''ℓ'', or with trivially equivalent negative values. When in addition ''m'' is even, the function is a polynomial. When ''m'' is zero and ''ℓ'' integer, these functions are identical to the Legendre polynomials. In general, when ''ℓ'' and ''m'' are integers, the regular solutions are sometimes called "associated Legendre polynomials", even though they are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associated Legendre Poly
*
{{dab ...
Associated may refer to: *Associated, former name of Avon, Contra Costa County, California * Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Association (other) *Associate (other) Associate may refer to: Academics * Associate degree, a two-year educational degree in the United States, and some areas of Canada * Associate professor, an academic rank at a college or university * Technical associate or Senmonshi, a Japan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gamma Function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer , \Gamma(n) = (n-1)!\,. Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: \Gamma(z) = \int_0^\infty t^ e^\,dt, \ \qquad \Re(z) > 0\,. The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles. The gamma function has no zeroes, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential function: \Gamma(z) = \mathcal M \ (z ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plot Of The Legendre Function Of The Second Kind Q N(x) With N=0
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the story of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' (film), a 1973 French-Italian film * ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a ship's on-board sensors * Plot plan, a type of drawing which shows existing and proposed conditions for a given area Land * Plot (land), a piece of land used for building on ** Burial plot, a piece of land a person is buried in * Quadrat, a de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Whipple Formulae
In the theory of special functions, Whipple's transformation for Legendre functions, named after Francis John Welsh Whipple, arise from a general expression, concerning associated Legendre functions. These formulae have been presented previously in terms of a viewpoint aimed at spherical harmonics, now that we view the equations in terms of toroidal coordinates, whole new symmetries of Legendre functions arise. For associated Legendre functions of the first and second kind, :P_^\biggl(\frac\biggr)= \frac and :Q_^\biggl(\frac\biggr)= -i(\pi/2)^\Gamma(-\nu-\mu)(z^2-1)^e^ P_\nu^\mu(z). These expressions are valid for all parameters \nu, \mu, and z. By shifting the complex degree and order in an appropriate fashion, we obtain Whipple formulae for general complex index interchange of general associated Legendre functions of the first and second kind. These are given by : P_^\mu(z)=\frac\biggl \pi\sin\mu\pi P_^\nu\biggl(\frac\biggr)+\cos\pi(\nu+\mu)e^Q_^\nu\biggl(\frac\biggr) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singularity (mathematics)
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For example, the real function : f(x) = \frac has a singularity at x = 0, where the numerical value of the function approaches \pm\infty so the function is not defined. The absolute value function g(x) = , x, also has a singularity at x = 0, since it is not differentiable there. The algebraic curve defined by \left\ in the (x, y) coordinate system has a singularity (called a cusp) at (0, 0). For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory. Real analysis In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homogeneous Space
In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ''G'' are called the symmetries of ''X''. A special case of this is when the group ''G'' in question is the automorphism group of the space ''X'' – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, ''X'' is homogeneous if intuitively ''X'' looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of ''G'' be faithful (non-identity elements act non-trivially), although the present article does not. Thus there is a group action of ''G'' on ''X'' which can be thought of as preserving some "geometric structure" on ''X'', and making ''X'' into a singl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zonal Spherical Function
In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group ''G'' with compact subgroup ''K'' (often a maximal compact subgroup) that arises as the matrix coefficient of a ''K''-invariant vector in an irreducible representation of ''G''. The key examples are the matrix coefficients of the '' spherical principal series'', the irreducible representations appearing in the decomposition of the unitary representation of ''G'' on ''L''2(''G''/''K''). In this case the commutant of ''G'' is generated by the algebra of biinvariant functions on ''G'' with respect to ''K'' acting by right convolution. It is commutative if in addition ''G''/''K'' is a symmetric space, for example when ''G'' is a connected semisimple Lie group with finite centre and ''K'' is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant funct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |