HOME
*



picture info

Associahedron K5 Faces, Ovals
In mathematics, an associahedron is an -dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari. Examples The one-dimensional associahedron ''K''3 represents the two parenthesizations ((''xy'')''z'') and (''x''(''yz'')) of three symbols, or the two triangulations of a square. It is itself a line segment. The two-dimensional associahedron ''K''4 represents the five parenthesizations of four symbols, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Associahedron K5 Front
In mathematics, an associahedron is an -dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari. Examples The one-dimensional associahedron ''K''3 represents the two parenthesizations ((''xy'')''z'') and (''x''(''yz'')) of three symbols, or the two triangulations of a square. It is itself a line segment. The two-dimensional associahedron ''K''4 represents the five parenthesizations of four symbols, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triaugmented Triangular Prism
The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid. The edges and vertices of the triaugmented triangular prism form a maximal planar graph with 9 vertices and 21 edges, called the Fritsch graph. It was used by Rudolf and Gerda Fritsch to show that Alfred Kempe's attempted proof of the four color theorem was incorrect. The Fritsch graph is one of only six graphs in which every neighborhood is a 4- or 5-vertex cycle. The dual polyhedron of the triaugmented triangular prism is an associahedron, a polyhedron with four quadrilateral faces and six ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Archiv Der Mathematik
'' Archiv der Mathematik'' is a peer-reviewed mathematics journal published by Springer, established in 1948. Abstracting and indexing The journal is abstracted and indexed in:
Springer. 2022
* * * * According to the ''

picture info

Rooted Binary Tree
In computer science, a binary tree is a k-ary k = 2 tree data structure in which each node has at most two children, which are referred to as the ' and the '. A recursive definition using just set theory notions is that a (non-empty) binary tree is a tuple (''L'', ''S'', ''R''), where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton set containing the root. Some authors allow the binary tree to be the empty set as well. From a graph theory perspective, binary (and K-ary) trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence—a term which appears in some very old programming books, before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than a directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Louis Loday
Jean-Louis Loday (12 January 1946 – 6 June 2012) was a French mathematician who worked on cyclic homology and who introduced Leibniz algebras (sometimes called Loday algebras) and Zinbiel algebras. He occasionally used the pseudonym Guillaume William Zinbiel, formed by reversing the last name of Gottfried Wilhelm Leibniz. Education and career Loday studied at Lycée Louis-le-Grand and at École Normale Supérieure in Paris. He completed his Ph.D. at the University of Strasbourg in 1975 under the supervision of Max Karoubi, with a dissertation titled ''K-Théorie algébrique et représentations de groupes''. He went on to become a senior scientist at CNRS and a member of the Institute for Advanced Mathematical Research (IRMA) at the University of Strasbourg. Publications * * * * See also *Associahedron *Blakers–Massey theorem In mathematics, the first Blakers–Massey theorem, named after Albert Blakers and William S. Massey, gave vanishing conditions for certain triad hom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has Schläfli symbol and can also be constructed as a truncated equilateral triangle, t, which alternates two types of edges. A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an inscribed circle). The common length of the sides equals the radius of the circumscribed circle or circumcircle, which equals \tfrac times the apothem (radius of the inscribed circle). All internal angles are 120 degrees. A regular hexagon has six rotational symmetries (''rotational symmetry of order six'') and six reflection symmetries (''six lines of symmetry''), making up the dihedral group D6. The longest diagonals of a regular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Golden Ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( or \phi) denotes the golden ratio. The constant \varphi satisfies the quadratic equation \varphi^2 = \varphi + 1 and is an irrational number with a value of The golden ratio was called the extreme and mean ratio by Euclid, and the divine proportion by Luca Pacioli, and also goes by several other names. Mathematicians have studied the golden ratio's properties since antiquity. It is the ratio of a regular pentagon's diagonal to its side and thus appears in the construction of the dodecahedron and icosahedron. A golden rectangle—that is, a rectangle with an aspect ratio of \varphi—may be cut into a square and a smaller rectangle with the same aspect ratio. The golden ratio has been used to analyze the proportions of natural object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Permutation
In mathematics, and in particular in group theory, a cyclic permutation (or cycle) is a permutation of the elements of some set ''X'' which maps the elements of some subset ''S'' of ''X'' to each other in a cyclic fashion, while fixing (that is, mapping to themselves) all other elements of ''X''. If ''S'' has ''k'' elements, the cycle is called a ''k''-cycle. Cycles are often denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted. For example, given ''X'' = , the permutation (1, 3, 2, 4) that sends 1 to 3, 3 to 2, 2 to 4 and 4 to 1 (so ''S'' = ''X'') is a 4-cycle, and the permutation (1, 3, 2) that sends 1 to 3, 3 to 2, 2 to 1 and 4 to 4 (so ''S'' = and 4 is a fixed element) is a 3-cycle. On the other hand, the permutation that sends 1 to 3, 3 to 1, 2 to 4 and 4 to 2 is not a cyclic permutation because it separately permutes the pairs and . The set ''S'' is called the orbit of the cycle. Every permutation on finitely many elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting ''regular pentagon'' (or ''star pentagon'') is called a pentagram. Regular pentagons A '' regular pentagon'' has Schläfli symbol and interior angles of 108°. A '' regular pentagon'' has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°). The diagonals of a convex regular pentagon are in the golden ratio to its sides. Given its side length t, its height H (distance from one side to the opposite vertex), width W (distance between two farthest separated points, which equals the diagonal length D) and circumradius R are given by: :\begin H &= \frac~t \approx 1.539~t, \\ W= D &= \frac~t\approx 1.618~t, \\ W &= \sqrt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unit Square
In mathematics, a unit square is a square whose sides have length . Often, ''the'' unit square refers specifically to the square in the Cartesian plane with corners at the four points ), , , and . Cartesian coordinates In a Cartesian coordinate system with coordinates , a unit square is defined as a square consisting of the points where both and lie in a closed unit interval from to . That is, a unit square is the Cartesian product , where denotes the closed unit interval. Complex coordinates The unit square can also be thought of as a subset of the complex plane, the topological space formed by the complex numbers. In this view, the four corners of the unit square are at the four complex numbers , , , and . Rational distance problem It is not known whether any point in the plane is a rational distance from all four vertices of the unit square.. See also * Unit circle * Unit cube * Unit sphere In mathematics, a unit sphere is simply a sphere of radius one around a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]