HOME





Aspherical Space
In topology, a branch of mathematics, an aspherical space is a path connected topological space with all homotopy groups \pi_n(X) equal to 0 when n\not = 1. If one works with CW complexes, one can reformulate this condition: an aspherical CW complex is a CW complex whose universal cover is contractible. Indeed, contractibility of a universal cover is the same, by Whitehead's theorem, as asphericality of it. And it is an application of the exact sequence of a fibration that higher homotopy groups of a space and its universal cover are same. (By the same argument, if ''E'' is a path-connected space and p\colon E \to B is any covering map, then ''E'' is aspherical if and only if ''B'' is aspherical.) Each aspherical space ''X'' is, by definition, an Eilenberg–MacLane space of type K(G,1), where G = \pi_1(X) is the fundamental group of ''X''. Also directly from the definition, an aspherical space is a classifying space for its fundamental group (considered to be a topological group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane (geometry), plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in Perspective (graphical)#Renaissance, perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CAT(0) Space
In mathematics, a \mathbf(k) space, where k is a real number, is a specific type of metric space. Intuitively, triangles in a \operatorname(k) space (with k0. Let (X,d) be a geodesic metric space, i.e. a metric space for which every two points x,y\in X can be joined by a geodesic segment, an arc length parametrized continuous curve \gamma\colon ,b\to X,\ \gamma(a) = x,\ \gamma(b) = y, whose length :L(\gamma) = \sup \left\ is precisely d(x,y). Let \Delta be a triangle in X with geodesic segments as its sides. \Delta is said to satisfy the \mathbf(k) inequality if there is a comparison triangle \Delta' in the model space M_k, with sides of the same length as the sides of \Delta, such that distances between points on \Delta are less than or equal to the distances between corresponding points on \Delta'. The geodesic metric space (X,d) is said to be a \mathbf(k) space if every geodesic triangle \Delta in X with perimeter less than 2D_k satisfies the \operatorname(k) inequality. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aleksandr Aleksandrov (mathematician)
Aleksandr Danilovich Aleksandrov (; 4 August 1912 – 27 July 1999) was a Soviet and Russian mathematician, physicist, philosopher and mountaineer. Personal life Aleksandr Aleksandrov was born in 1912 in Volyn, Ryazan Oblast. His father was a headmaster of a secondary school in St Petersburg and his mother a teacher at said school, thus the young Alekandrov spent a majority of his childhood in the city. His family was old Russian nobility—students noted ancestral portraits which hung in his office. His sisters were Soviet botanist Vera Danilovna Aleksandrov (RU) and Maria Danilovna Aleksandrova, author of the first monograph on gerontopsychology in the USSR. In 1937, he married a student of the Faculty of Physics, Marianna Leonidovna Georg. Together they had two children: Daria (b. 1948) and Daniil (RU) (b. 1957). In 1980, he married Svetlana Mikhailovna Vladimirova (nee Bogacheva). In 1951 he became a member of the Communist Party. Alekandrov had a personal love for poetr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sphere Theorem (3-manifolds)
In mathematics, in the topology of 3-manifolds, the sphere theorem of gives conditions for elements of the second homotopy group of a 3-manifold to be represented by embedded spheres. One example is the following: Let M be an orientable 3-manifold such that \pi_2(M) is not the trivial group. Then there exists a non-zero element of \pi_2(M) having a representative that is an embedding S^2\to M. The proof of this version of the theorem can be based on transversality methods, see . Another more general version (also called the projective plane theorem, and due to David B. A. Epstein) is: Let M be any 3-manifold and N a \pi_1(M)- invariant subgroup of \pi_2(M). If f\colon S^2\to M is a general position map such that notin N and U is any neighborhood of the singular set \Sigma(f), then there is a map g\colon S^2\to M satisfying # notin N, #g(S^2)\subset f(S^2)\cup U, #g\colon S^2\to g(S^2) is a covering map, and #g(S^2) is a 2-sided submanifold (2-sphere or projective pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot (mathematics)
In mathematics, a knot is an embedding of the circle () into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of which takes one knot to the other. A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed — there are no ends to tie or untie on a mathematical knot. Physical properties such as friction and thickness also do not apply, although there are mathematical definitions of a knot that take such properties into account. The term ''knot'' is also applied to embeddings of in , especially in the case . The branch of mathematics that studies knots is known as knot theory and has many relations to graph theory. Formal definition A knot is an embedding of the circle () into three-dimensional Euclidean space (), or the 3-sphere (), since the 3-sphere is compact. Two knots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Valuation
In mathematics, a discrete valuation is an integer valuation on a field ''K''; that is, a function: :\nu:K\to\mathbb Z\cup\ satisfying the conditions: :\nu(x\cdot y)=\nu(x)+\nu(y) :\nu(x+y)\geq\min\big\ :\nu(x)=\infty\iff x=0 for all x,y\in K. Note that often the trivial valuation which takes on only the values 0,\infty is explicitly excluded. A field with a non-trivial discrete valuation is called a discrete valuation field. Discrete valuation rings and valuations on fields To every field K with discrete valuation \nu we can associate the subring ::\mathcal_K := \left\ of K, which is a discrete valuation ring. Conversely, the valuation \nu: A \rightarrow \Z\cup\ on a discrete valuation ring A can be extended in a unique way to a discrete valuation on the quotient field K=\text(A); the associated discrete valuation ring \mathcal_K is just A. Examples * For a fixed prime p and for any element x \in \mathbb different from zero write x = p^j\frac with j, a,b \in \Z such that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraic Group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups, including orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties. An important class of algebraic groups is given by the affine algebraic groups, those whose underlying algebraic variety is an affine variety; they are exactly the algebraic subgroups of the general linear group, and are therefore also called ''linear algebraic groups''. Another class is formed by the abelian varieties, which are the algebraic groups whose underlying variety is a projective variety. Chevalley's structure theorem states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Symmetric Space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (''M'', ''g'') is said to be symmetric if and only if, for each point ''p'' of ''M'', there exists an isometry of ''M'' fixing ''p'' and acting on the tangent space T_pM as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetrie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (discrete Subgroup)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Symmetric Space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (''M'', ''g'') is said to be symmetric if and only if, for each point ''p'' of ''M'', there exists an isometry of ''M'' fixing ''p'' and acting on the tangent space T_pM as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetries a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]