HOME





Approximate Group
In mathematics, an approximate group is a subset of a group which behaves like a subgroup "up to a constant error", in a precise quantitative sense (so the term approximate subgroup may be more correct). For example, it is required that the set of products of elements in the subset be not much bigger than the subset itself (while for a subgroup it is required that they be equal). The notion was introduced in the 2010s but can be traced to older sources in additive combinatorics. Formal definition Let G be a group and K \ge 1; for two subsets X, Y \subset G we denote by X\cdot Y the set of all products xy, x\in X, y\in Y. A non-empty subset A \subset G is a ''K-approximate subgroup'' of G if: # It is symmetric, that is if g \in A then g^ \in A; # There exists a subset X \subset G of cardinality , X, \le K such that A \cdot A \subset X\cdot A. It is immediately verified that a finite 1-approximate subgroup is the same thing as a genuine subgroup. Of course this definition is on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Gromov's Theorem On Groups Of Polynomial Growth
In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of ''polynomial'' growth, as those groups which have nilpotent subgroups of finite index. Statement The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length at most ''n'' (relative to a symmetric generating set) is bounded above by a polynomial function ''p''(''n''). The ''order of growth'' is then the least degree of any such polynomial function ''p''. A nilpotent group ''G'' is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index. Growth rates of nilpotent groups There is a vast literature on growth rates, leading up to Gromov's theorem. An earli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Publications Mathématiques De L'IHÉS
''Publications Mathématiques de l'IHÉS'' is a peer-reviewed mathematical journal. It is published by Springer Science+Business Media on behalf of the Institut des Hautes Études Scientifiques, with the help of the Centre National de la Recherche Scientifique. The journal was established in 1959 and was published at irregular intervals, from one to five volumes a year. It is now biannual. The editor-in-chief is Sébastien Boucksom (CNRS, Institut de Mathématique de Jussieu). See also *''Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as t ...'' *'' Journal of the American Mathematical Society'' *'' Inventiones Mathematicae'' External links * Back issues from 1959 to 2010 Mathematics journals Academic journals established in 1959 Springer Science+Business Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier Elsevier ( ) is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell (journal), Cell'', the ScienceDirect collection of electronic journals, .... ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen ( R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Superstrong Approximation
Superstrong approximation is a generalisation of strong approximation in algebraic groups ''G'', to provide spectral gap results. The spectrum in question is that of the Laplacian matrix associated to a family of quotients of a discrete group Γ; and the gap is that between the first and second eigenvalues (normalisation so that the first eigenvalue corresponds to constant functions as eigenvectors). Here Γ is a subgroup of the rational points of ''G'', but need not be a lattice: it may be a so-called thin group. The "gap" in question is a lower bound (absolute constant) for the difference of those eigenvalues. A consequence and equivalent of this property, potentially holding for Zariski dense subgroups Γ of the special linear group over the integers, and in more general classes of algebraic groups ''G'', is that the sequence of Cayley graphs for reductions Γ''p'' modulo prime numbers ''p'', with respect to any fixed set ''S'' in Γ that is a symmetric set and generating set, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Expander Graph
In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes. Definitions Intuitively, an expander graph is a finite, undirected multigraph in which every subset of the vertices that is not "too large" has a "large" boundary. Different formalisations of these notions give rise to different notions of expanders: ''edge expanders'', ''vertex expanders'', and ''spectral expanders'', as defined below. A disconnected graph is not an expander, since the boundary of a connected component is empty. Every connected finite graph is an expander; however, different connected graphs have different expansion parameters. The complete graph has the best expansion property, but it has largest possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Growth Rate (group Theory)
In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length ''n''. Definition Suppose ''G'' is a finitely generated group; and ''T'' is a finite ''symmetric'' set of generators (symmetric means that if x \in T then x^ \in T ). Any element x \in G can be expressed as a word in the ''T''-alphabet : x = a_1 \cdot a_2 \cdots a_k \text a_i\in T. Consider the subset of all elements of ''G'' that can be expressed by such a word of length ≤ ''n'' :B_n(G,T) = \. This set is just the closed ball of radius ''n'' in the word metric ''d'' on ''G'' with respect to the generating set ''T'': :B_n(G,T) = \. More geometrically, B_n(G,T) is the set of vertices in the Cayley graph with respect to ''T'' that are within dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Finite Groups Of Lie Type
In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase ''group of Lie type'' does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups. The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. and are standard references for groups of Lie type. Classical groups An initial approach to this question was the definition and detailed study of the so-called ''classical groups'' over finite and other fields by . These groups were studied by L. E. Dickson ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Acta Mathematica Hungarica
'' Acta Mathematica Hungarica'' is a peer-reviewed mathematics journal of the Hungarian Academy of Sciences, published by Akadémiai Kiadó and Springer Science+Business Media. The journal was established in 1950 and publishes articles on mathematics related to work by Hungarian mathematicians. Its 2009 MCQ was 0.39, and its 2015 impact factor was 0.469. The editor-in-chief is Imre Bárány, honorary editor is Ákos Császár, the editors are the mathematician members of the Hungarian Academy of Sciences. Abstracting and indexing According to the ''Journal Citation Reports'', the journal had a 2021 impact factor of 0.979. This journal is indexed by the following services: * Science Citation Index * Journal Citation Reports/Science Edition * Scopus * Mathematical Reviews * Zentralblatt Math zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Imre Z
Imre () is a Hungarian masculine first name, which is also in Estonian use, where the corresponding name day is 10 April. It has been suggested that it relates to the name Emeric, Emmerich or Heinrich. Its English equivalents are Emery and Henry. Bearers of the name include the following (who generally held Hungarian nationality, unless otherwise noted): * Imre Antal (1935–2008), pianist * Imre Bajor (1957–2014), actor * Imre Bebek (d. 1395), baron * Imre Bródy (1891–1944), physicist * Imre Bujdosó (b. 1959), Olympic fencer * Imre Csáky (cardinal) (1672–1732), Roman Catholic cardinal * Imre Csermelyi (b. 1988), football player *Imre Cseszneky (1804–1874), agriculturist and patriot * Imre Csiszár (b. 1938), mathematician * Imre Csösz (b. 1969), Olympic judoka * Imre Czobor (1520–1581), Noble and statesman *Imre Czomba (b. 1972), Composer and musician * Imre Deme (b. 1983), football player * Imre Erdődy (1889–1973), Olympic gymnast * Imre Farkas (1879–1976 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]