HOME
*





Ankeny–Artin–Chowla Congruence
In number theory, the Ankeny–Artin–Chowla congruence is a result published in 1953 by N. C. Ankeny, Emil Artin and S. Chowla. It concerns the class number ''h'' of a real quadratic field of discriminant ''d'' > 0. If the fundamental unit of the field is :\varepsilon = \frac with integers ''t'' and ''u'', it expresses in another form :\frac \pmod\; for any prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ... ''p'' > 2 that divides ''d''. In case ''p'' > 3 it states that :-2 \equiv \sum_ \lfloor \rfloor \pmod where m = \frac\;   and  \chi\;  is the Dirichlet character for the quadratic field. For ''p'' = 3 there is a factor (1 + ''m'') multiplying the LHS. Here :\lfloor x\rfloor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrian and Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as “opera singer” though others list it as “art dealer.” It seems at least plausible that he and Emma had ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Number (number Theory)
In number theory, the ideal class group (or class group) of an algebraic number field is the quotient group where is the group of fractional ideals of the ring of integers of , and is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of . The order of the group, which is finite, is called the class number of . The theory extends to Dedekind domains and their field of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic forms, as put into s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 and 1. If d>0, the corresponding quadratic field is called a real quadratic field, and, if d<0, it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the s. Quadratic fields have been studied in great depth, initially as part of the theory of s. There remain some unsolved prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discriminant
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. The discriminant of the quadratic polynomial ax^2+bx+c is :b^2-4ac, the quantity which appears under the square root in the quadratic formula. If a\ne 0, this discriminant is zero if and only if the polynomial has a double root. In the case of real coefficients, it is positive if the polynomial has two distinct real roots, and negative if it has two distinct complex conjugate roots. Similarly, the discriminant of a cubic polynomial is zero if and only if the polynomial has a multiple root. In the case of a cubic with real coefficients, the discriminant is positive if the polynomial has three distinct real roots, and negative i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fundamental Unit (number Theory)
In algebraic number theory, a fundamental unit is a generator (modulo the roots of unity) for the unit group of the ring of integers of a number field, when that group has rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic). Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units. Some authors use the term fundamental unit to mean any element of a fundamental system of units, not restricting to the case of rank 1 (e.g. ). Real quadratic fields For the real quadratic field K=\mathbf(\sqrt) (with ''d'' square-free), the fundamental unit ε is commonly normalized so that (as a real number). Then it is uniquely characterized as the minimal unit among those that are greater than 1. If Δ denotes the discriminant of ''K'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Character
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi:\mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b: :1)   \chi(ab) = \chi(a)\chi(b);   i.e. \chi is completely multiplicative. :2)   \chi(a) \begin =0 &\text\; \gcd(a,m)>1\\ \ne 0&\text\;\gcd(a,m)=1. \end (gcd is the greatest common divisor) :3)   \chi(a + m) = \chi(a); i.e. \chi is periodic with period m. The simplest possible character, called the principal character, usually denoted \chi_0, (see Notation below) exists for all moduli: : \chi_0(a)= \begin 0 &\text\; \gcd(a,m)>1\\ 1 &\text\;\gcd(a,m)=1. \end The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions. Notation \phi(n) is Euler's totient function. \zeta_n is a complex primitive n-th root of unity: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sides Of An Equation
In mathematics, LHS is informal shorthand for the left-hand side of an equation. Similarly, RHS is the right-hand side. The two sides have the same value, expressed differently, since equality is symmetric.Engineering Mathematics, John Bird, p65
definition and example of abbreviation More generally, these terms may apply to an or ; the right-hand side is every ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floor Function
In mathematics and computer science, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, , , , and . Historically, the floor of has been–and still is–called the integral part or integer part of , often denoted (as well as a variety of other notations). Some authors may define the integral part as if is nonnegative, and otherwise: for example, and . The operation of truncation generalizes this to a specified number of digits: truncation to zero significant digits is the same as the integer part. For an integer, . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Carl Friedrich Gauss introduced the square bracket notation in hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernoulli Number
In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of ''m''-th powers of the first ''n'' positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function. The values of the first 20 Bernoulli numbers are given in the adjacent table. Two conventions are used in the literature, denoted here by B^_n and B^_n; they differ only for , where B^_1=-1/2 and B^_1=+1/2. For every odd , . For every even , is negative if is divisible by 4 and positive otherwise. The Bernoulli numbers are special values of the Bernoulli polynomials B_n(x), with B^_n=B_n(0) and B^+_n=B_n(1). The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jacob Bernoulli, after whom they are named, and indepe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]