Alternating Direction Method Of Multipliers
Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective; the difference is that the augmented Lagrangian method adds yet another term, designed to mimic a Lagrange multiplier. The augmented Lagrangian is related to, but not identical with the method of Lagrange multipliers. Viewed differently, the unconstrained objective is the Lagrangian of the constrained problem, with an additional penalty term (the augmentation). The method was originally known as the method of multipliers, and was studied much in the 1970 and 1980s as a good alternative to penalty methods. It was first discussed by Magnus Hestenes, and by Michael Powell in 1969. The method was studied by R. Tyrrell Rockafellar in relation to Fenchel duality, particularly in relation to proxima ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sparse Matrix
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.g., ''m'' × ''n'' for an ''m'' × ''n'' matrix) is sometimes referred to as the sparsity of the matrix. Conceptually, sparsity corresponds to systems with few pairwise interactions. For example, consider a line of balls connected by springs from one to the next: this is a sparse system as only adjacent balls are coupled. By contrast, if the same line of balls were to have springs connecting each ball to all other balls, the system would correspond to a dense matrix. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proximal Point Algorithm
Standard anatomical terms of location are used to unambiguously describe the anatomy of animals, including humans. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position provides a definition of what is at the front ("anterior"), behind ("posterior") and so on. As part of defining and describing terms, the body is described through the use of anatomical planes and anatomical axes. The meaning of terms that are used can change depending on whether an organism is bipedal or quadrupedal. Additionally, for some animals such as invertebrates, some terms may not have any meaning at all; for example, an animal that is radially symmetrical will have no anterior surface, but can still have a description that a part is close to the middle ("proximal") or further from the middle ("distal"). International organisations have determined vocabularies that are often used as standard vocabularies for subdisciplines of anatomy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobi Method
In numerical linear algebra, the Jacobi method is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi. Description Let :A\mathbf x = \mathbf b be a square system of ''n'' linear equations, where: A = \begin a_ & a_ & \cdots & a_ \\ a_ & a_ & \cdots & a_ \\ \vdots & \vdots & \ddots & \vdots \\a_ & a_ & \cdots & a_ \end, \qquad \mathbf = \begin x_ \\ x_2 \\ \vdots \\ x_n \end , \qquad \mathbf = \begin b_ \\ b_2 \\ \vdots \\ b_n \end. Then ''A'' can be decomposed into a diagonal component ''D'', a lower triangular part ''L'' and an upper triangular part ''U'': :A=D+L+U \qquad \text \qquad D = \begin a_ & 0 & \cdots & 0 \\ 0 & a_ & \cdot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Augmented Lagrangian Method
Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective; the difference is that the augmented Lagrangian method adds yet another term, designed to mimic a Lagrange multiplier. The augmented Lagrangian is related to, but not identical with the method of Lagrange multipliers. Viewed differently, the unconstrained objective is the Lagrangian of the constrained problem, with an additional penalty term (the augmentation). The method was originally known as the method of multipliers, and was studied much in the 1970 and 1980s as a good alternative to penalty methods. It was first discussed by Magnus Hestenes, and by Michael Powell in 1969. The method was studied by R. Tyrrell Rockafellar in relation to Fenchel duality, particularly in relation to proximal-poi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss–Seidel Method
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel, and is similar to the Jacobi method. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. A publication was not delivered before 1874 by Seidel. Description The Gauss–Seidel method is an iterative technique for solving a square system of linear equations with unknown : A\mathbf x = \mathbf b . It is defined by the iteration L_* \mathbf^ = \mathbf - U \mathbf^, where \mathbf^ is the -th approximation or iteration of \mathbf,\,\mathbf^ is the next or -th it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compressed Sensing
Compressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling) is a signal processing technique for efficiently acquiring and reconstructing a Signal (electronics), signal, by finding solutions to Underdetermined system, underdetermined linear systems. This is based on the principle that, through optimization, the sparsity of a signal can be exploited to recover it from far fewer samples than required by the Nyquist–Shannon sampling theorem. There are two conditions under which recovery is possible. The first one is sparsity, which requires the signal to be sparse in some domain. The second one is incoherence, which is applied through the isometric property, which is sufficient for sparse signals. Overview A common goal of the engineering field of signal processing is to reconstruct a signal from a series of sampling measurements. In general, this task is impossible because there is no way to reconstruct a signal during the times that the signa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Total Variation Denoising
In signal processing, particularly image processing, total variation denoising, also known as total variation regularization or total variation filtering, is a noise removal process (filter). It is based on the principle that signals with excessive and possibly spurious detail have high ''total variation'', that is, the integral of the absolute image gradient is high. According to this principle, reducing the total variation of the signal—subject to it being a close match to the original signal—removes unwanted detail whilst preserving important details such as edges. The concept was pioneered by L. I. Rudin, S. Osher, and E. Fatemi in 1992 and so is today known as the ''ROF model''. This noise removal technique has advantages over simple techniques such as linear smoothing or median filtering which reduce noise but at the same time smooth away edges to a greater or lesser degree. By contrast, total variation denoising is remarkably effective edge-preserving filter, i.e., ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AMPL
AMPL (A Mathematical Programming Language) is an algebraic modeling language to describe and solve high-complexity problems for large-scale mathematical computing (i.e., large-scale optimization and scheduling-type problems). It was developed by Robert Fourer, David Gay, and Brian Kernighan at Bell Laboratories. AMPL supports dozens of solvers, both open source and commercial software, including CBC, CPLEX, FortMP, MINOS, IPOPT, SNOPT, KNITRO, and LGO. Problems are passed to solvers as nl files. AMPL is used by more than 100 corporate clients, and by government agencies and academic institutions. One advantage of AMPL is the similarity of its syntax to the mathematical notation of optimization problems. This allows for a very concise and readable definition of problems in the domain of optimization. Many modern solvers available on the NEOS Server (formerly hosted at the Argonne National Laboratory, currently hosted at the University of Wisconsin, Madison) accept AMPL input. Ac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galahad Library
The Galahad library is a thread-safe library of packages for the solution of mathematical optimization problems. The areas covered by the library are unconstrained and bound-constrained optimization, quadratic programming, nonlinear programming, systems of nonlinear equations and inequalities, and non-linear least squares problems. The library is mostly written in the Fortran 90 programming language. The name of the library originates from its major package for general nonlinear programming, LANCELOT-B, the successor of the original augmented Lagrangian package LANCELOT of Conn, Gould and Toint. Other packages in the library include: * a filter-based method for systems of linear and nonlinear equations and inequalities, * an active-set method for nonconvex quadratic programming, * a primal-dual interior-point method for nonconvex quadratic programming, * a presolver for quadratic programs, * a Lanczos method for trust-region subproblems, * an interior-point method to solve line ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Self-concordant Function
In optimization, a self-concordant function is a function f:\mathbb \rightarrow \mathbb for which : , f(x), \leq 2 f''(x)^ or, equivalently, a function f:\mathbb \rightarrow \mathbb that, wherever f''(x) > 0, satisfies : \left, \frac \frac \ \leq 1 and which satisfies f(x) = 0 elsewhere. More generally, a multivariate function f(x) : \mathbb^n \rightarrow \mathbb is self-concordant if : \left. \frac \nabla^2 f(x + \alpha y) \_ \preceq 2 \sqrt \, \nabla^2 f(x) or, equivalently, if its restriction to any arbitrary line is self-concordant. History As mentioned in the "Bibliography Comments" of their 1994 book, self-concordant functions were introduced in 1988 by Yurii Nesterov and further developed with Arkadi Nemirovski. As explained in their basic observation was that the Newton method is affine invariant, in the sense that if for a function f(x) we have Newton steps x_ = x_k - ''(x_k)f'(x_k) then for a function \phi(y) = f(Ay) where A is a non-degenerate linear trans ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |