Algebraic Holography
   HOME
*





Algebraic Holography
Algebraic holography, also sometimes called Rehren duality, is an attempt to understand the holographic principle of quantum gravity within the framework of algebraic quantum field theory, due to Karl-Henning Rehren. It is sometimes described as an alternative formulation of the AdS/CFT correspondence of string theory, but some string theorists reject this statemen The theories discussed in algebraic holography do not satisfy the usual holographic principle because their entropy follows a higher-dimensional power law. Rehren's duality The conformal boundary of an anti-de Sitter space (or its universal covering space) is the conformal Minkowski space (or its universal covering space) with one fewer dimension. Let's work with the universal covering spaces. In AQFT, a QFT in the conformal space is given by a conformally covariant net of C* algebras over the conformal space and the QFT in AdS is given a covariant net of C* algebras over AdS. Any two distinct null geodesic hypersurfa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Holographic Principle
The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string-theory interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, “The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Gravity
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars. Three of the four fundamental forces of physics are described within the framework of quantum mechanics and quantum field theory. The current understanding of the fourth force, gravity, is based on Albert Einstein's general theory of relativity, which is formulated within the entirely different framework of classical physics. However, that description is incomplete: describing the gravitational field of a black hole in the general theory of relativity leads physical quantities, such as the spacetime curvature, to diverge at the center of the black hole. This signals the breakdown of the general theory of relativity and the need for a theory that goes b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Quantum Field Theory
Algebraic quantum field theory (AQFT) is an application to local quantum physics of C*-algebra theory. Also referred to as the Haag–Kastler axiomatic framework for quantum field theory, because it was introduced by . The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Haag–Kastler axioms Let \mathcal be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net \_ of von Neumann algebras \mathcal(O) on a common Hilbert space \mathcal satisfying the following axioms: * ''Isotony'': O_1 \subset O_2 implies \mathcal(O_1) \subset \mathcal(O_2). * ''Causality'': If O_1 is space-like separated from O_2, then mathcal(O_1),\mathcal(O_2)0. * ''Poincaré covariance'': A strongly continuous unitary representation U(\mathcal) of the Poincaré group \mathcal on \mathcal exists such that \mathcal(gO) = U(g) \mathcal(O) U(g)^*, g \in \mathcal. * ''Spectrum condition' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Karl-Henning Rehren
Karl-Henning Rehren (born 1956 in Celle) is a German physicist who focuses on algebraic quantum field theory. Biography Rehren studied physics in Heidelberg, Paris and Freiburg. In Freiburg he received his PhD (advisor Klaus Pohlmeyer) in 1984. Habilitation 1991 in Berlin. Since 1997 he teaches physics in Göttingen. He became notable outside his field, especially among string theorists, in 1999 when he discovered the Algebraic holography (also called '' Rehren duality''), a relation between quantum field theories AdSd+1 and conformal quantum field theories on d-dimensional Minkowski spacetime, which is similar in scope to the Holographic principle. This work has no direct relation to the more well known Maldacena duality, but refers to the more general statement of the AdS/CFT correspondence by Edward Witten. It is generally accepted that the relation found by Rehren does not provide a proof for Witten's conjecture and is thus considered an independent result. Selected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AdS/CFT Correspondence
In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles. The duality represents a major advance in the understanding of string theory and quantum gravity.de Haro et al. 2013, p. 2 This is because it provides a non-perturbative formulation of string theory with certain boundary conditions and because it is the most successful realization of the holographic principle, an idea in quantum gravity originally proposed by Gerard 't Hooft and promoted by Leonard Susskind. It also provides a powerf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and conde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conformal Boundary
In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity. It is an extension of a Minkowski diagram where the vertical dimension represents time, and the horizontal dimension represents a space dimension. Using this design, all light rays take a 45° path.(c = 1). The biggest difference is that locally, the metric on a Penrose diagram is conformally equivalent to the actual metric in spacetime. The conformal factor is chosen such that the entire infinite spacetime is transformed into a Penrose diagram of finite size, with infinity on the boundary of the diagram. For spherically symmetric spacetimes, every point in the Penrose diagram corresponds to a 2-dimensional sphere (\theta,\phi). Basic properties While Penrose diagrams share the same basic coordinate vector system of other spacetime diagrams for local ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Anti-de Sitter Space
In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Manifolds of constant curvature are most familiar in the case of two dimensions, where the elliptic plane or surface of a sphere is a surface of constant positive curvature, a flat (i.e., Euclidean) plane is a surface of constant zero curvature, and a hyperbolic plane is a surface of constant negative curvature. Einstein's general theory of relativity places space and time on equal footing, so that one considers the geometry of a unified spacetime instead of considering space and time separately. The cases of spacetime o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Covering Space
A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties. Definition Let X be a topological space. A covering of X is a continuous map : \pi : E \rightarrow X such that there exists a discrete space D and for every x \in X an Neighbourhood (mathematics), open neighborhood U \subset X, such that \pi^(U)= \displaystyle \bigsqcup_ V_d and \pi, _:V_d \rightarrow U is a homeomorphism for every d \in D . Often, the notion of a covering is used for the covering space E as well as for the map \pi : E \rightarrow X. The open sets V_ are called sheets, which are uniquely determined up to a homeomorphism if U is Connected space, connected. For each x \in X the discrete subset \pi^(x) is called the fiber of x. The degree of a covering is the cardinality of the space D. If E is Path connected, path-connected, then the covering \pi : E \rightarrow X is denoted as a path-connected covering. Examples * For every topological space X there exi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Space
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity. Minkowski space is closely associated with Einstein's theories of special relativity and general relativity and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time may differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime between events.This makes spacetime distance an invariant. Becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cone
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base that is in a plane that does not contain the apex. Depending on the author, the base may be restricted to be a circle, any one-dimensional quadratic form in the plane, any closed one-dimensional figure, or any of the above plus all the enclosed points. If the enclosed points are included in the base, the cone is a solid object; otherwise it is a two-dimensional object in three-dimensional space. In the case of a solid object, the boundary formed by these lines or partial lines is called the ''lateral surface''; if the lateral surface is unbounded, it is a conical surface. In the case of line segments, the cone does not extend beyond the base, while in the case of half-lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Quantum Field Theory
The Haag–Kastler axiomatic framework for quantum field theory, introduced by , is an application to local quantum physics of C*-algebra theory. Because of this it is also known as algebraic quantum field theory (AQFT). The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Haag–Kastler axioms Let \mathcal be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net \_ of von Neumann algebras \mathcal(O) on a common Hilbert space \mathcal satisfying the following axioms: * ''Isotony'': O_1 \subset O_2 implies \mathcal(O_1) \subset \mathcal(O_2). * ''Causality'': If O_1 is space-like separated from O_2, then [\mathcal(O_1),\mathcal(O_2)]=0. * ''Poincaré covariance'': A strongly continuous unitary representation U(\mathcal) of the Poincaré group \mathcal on \mathcal exists such that \mathcal(gO) = U(g) \mathcal(O) U(g)^*, g \in \mathcal. * ''Spectrum conditi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]