HOME
*





Algebraic Geometry Code
Algebraic geometry codes, often abbreviated AG codes, are a type of linear code that generalize Reed–Solomon codes. The Russian mathematician V. D. Goppa constructed these codes for the first time in 1982. History The name of these codes has evolved since the publication of Goppa's paper describing them. Historically these codes have also been referred to as geometric Goppa codes; however, this is no longer the standard term used in coding theory literature. This is due to the fact that Goppa codes are a distinct class of codes which were also constructed by Goppa in the early 1970s. These codes attracted interest in the coding theory community because they have the ability to surpass the Gilbert–Varshamov bound; at the time this was discovered, the Gilbert–Varshamov bound had not been broken in the 30 years since its discovery. This was demonstrated by Tfasman, Vladut, and Zink in the same year as the code construction was published, in their paper "Modular curves, Shim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Code
In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes (cf. syndrome decoding). Linear codes are used in forward error correction and are applied in methods for transmitting symbols (e.g., bits) on a communications channel so that, if errors occur in the communication, some errors can be corrected or detected by the recipient of a message block. The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent. A linear code of length ''n'' transmits blocks containing ''n'' symbols. For example, the ,4,3 Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Roch Theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus ''g'', in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student . It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. Preliminary notions A Riemann surface X is a topological space that is locally homeomorphic to an open subset of \Complex, the set of complex numbers. In addition, the transition maps between these open subsets are required to be holomorphic. The latter condition allows one to transfer the notions and methods of complex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Curves
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for such a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coding Theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data. There are four types of coding: # Data compression (or ''source coding'') # Error control (or ''channel coding'') # Cryptographic coding # Line coding Data compression attempts to remove unwanted redundancy from the data from a source in order to transmit it more efficiently. For example, ZIP data compression makes data files smaller, for purposes such as to reduce Internet traffic. Data compression a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hasse's Theorem On Elliptic Curves
Hasse's theorem on elliptic curves, also referred to as the Hasse bound, provides an estimate of the number of points on an elliptic curve over a finite field, bounding the value both above and below. If ''N'' is the number of points on the elliptic curve ''E'' over a finite field with ''q'' elements, then Hasse's result states that :, N - (q+1), \le 2 \sqrt. The reason is that ''N'' differs from ''q'' + 1, the number of points of the projective line over the same field, by an 'error term' that is the sum of two complex numbers, each of absolute value . This result had originally been conjectured by Emil Artin in his thesis. It was proven by Hasse in 1933, with the proof published in a series of papers in 1936. Hasse's theorem is equivalent to the determination of the absolute value of the roots of the local zeta-function of ''E''. In this form it can be seen to be the analogue of the Riemann hypothesis for the function field associated with the elliptic curve. Hasse-Wei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Support (mathematics)
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraic Function Field
In mathematics, an algebraic function field (often abbreviated as function field) of ''n'' variables over a field ''k'' is a finitely generated field extension ''K''/''k'' which has transcendence degree ''n'' over ''k''. Equivalently, an algebraic function field of ''n'' variables over ''k'' may be defined as a finite field extension of the field ''K'' = ''k''(''x''1,...,''x''''n'') of rational functions in ''n'' variables over ''k''. Example As an example, in the polynomial ring ''k'' 'X'',''Y''consider the ideal generated by the irreducible polynomial ''Y''2 − ''X''3 and form the field of fractions of the quotient ring ''k'' 'X'',''Y''(''Y''2 − ''X''3). This is a function field of one variable over ''k''; it can also be written as k(X)(\sqrt) (with degree 2 over k(X)) or as k(Y)(\sqrt (with degree 3 over k(Y)). We see that the degree of an algebraic function field is not a well-defined notion. Category structure The algebraic function fields over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Point
In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point. Understanding rational points is a central goal of number theory and Diophantine geometry. For example, Fermat's Last Theorem may be restated as: for , the Fermat curve of equation x^n+y^n=1 has no other rational points than , , and, if is even, and . Definition Given a field ''k'', and an algebraically closed extension ''K'' of ''k'', an affine variety ''X'' over ''k'' is the set of common zeros in K^n of a collection of polynomials with coefficients in ''k'': :f_1(x_1,\ldots,x_n)=0,\ldots, f_r(x_1,\dots,x_n)=0. These common zeros are called the ''points'' of ''X''. A ''k''-rational point (or ''k''-point) of ''X'' is a point of ''X'' that belongs to ''k''''n'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor (algebraic Geometry)
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Point At Infinity
In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a projective plane, in which no point can be distinguished, if we "forget" which points were added. This holds for a geometry over any field, and more generally over any division ring. In the real case, a point at infinity completes a line into a topologically closed curve. In higher dimensions, all the points at infinity form a projective subspace of one dimension less than that of the whole projective space to which they belong. A point at infinity can also be added to the complex line (which may be thought of as the complex plane), thereby turning it into a closed surface known as the complex projective line, CP1, also called the Riemann sphere (when complex numbers are mapped to each point). In the case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reed–Solomon Error Correction
Reed–Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed and Gustave Solomon in 1960. They have many applications, the most prominent of which include consumer technologies such as MiniDiscs, CDs, DVDs, Blu-ray discs, QR codes, data transmission technologies such as DSL and WiMAX, broadcast systems such as satellite communications, DVB and ATSC, and storage systems such as RAID 6. Reed–Solomon codes operate on a block of data treated as a set of finite-field elements called symbols. Reed–Solomon codes are able to detect and correct multiple symbol errors. By adding =  −  check symbols to the data, a Reed–Solomon code can detect (but not correct) any combination of up to erroneous symbols, ''or'' locate and correct up to erroneous symbols at unknown locations. As an erasure code, it can correct up to erasures at locations that are known and provided to the algorithm, or it can detect and correct combinations of erro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zeros And Poles
In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. In some sense, it is the simplest type of singularity. Technically, a point is a pole of a function if it is a zero of the function and is holomorphic in some neighbourhood of (that is, complex differentiable in a neighbourhood of ). A function is meromorphic in an open set if for every point of there is a neighborhood of in which either or is holomorphic. If is meromorphic in , then a zero of is a pole of , and a pole of is a zero of . This induces a duality between ''zeros'' and ''poles'', that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its poles equals the sum of the multiplicities of its zeros. Definitions A function of a complex variable is holomorphic in an open domai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]