HOME
*





Albanese Variety
In mathematics, the Albanese variety A(V), named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. Precise statement The Albanese variety is the abelian variety A generated by a variety V taking a given point of V to the identity of A. In other words, there is a morphism from the variety V to its Albanese variety \operatorname(V), such that any morphism from V to an abelian variety (taking the given point to the identity) factors uniquely through \operatorname(V). For complex manifolds, defined the Albanese variety in a similar way, as a morphism from V to a torus \operatorname(V) such that any morphism to a torus factors uniquely through this map. (It is an analytic variety in this case; it need not be algebraic.) Properties For compact Kähler manifolds the dimension of the Albanese variety is the Hodge number h^, the dimension of the space of differentials of the first kind on V, which for surfaces is called the irregularity of a surface. In terms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annales Scientifiques De L'École Normale Supérieure
''Annales Scientifiques de l'École Normale Supérieure'' is a French scientific journal of mathematics published by the Société Mathématique de France. It was established in 1864 by the French chemist Louis Pasteur and published articles in mathematics, physics, chemistry, biology, and geology. In 1900, it became a purely mathematical journal. It is published with help of the Centre national de la recherche scientifique. Its web site is hosted by the mathematics department of the École Normale Supérieure École may refer to: * an elementary school in the French educational stages normally followed by secondary education establishments (collège and lycée) * École (river), a tributary of the Seine flowing in région Île-de-France * École, Savoi .... External links * Archive(1864–2013) Mathematics journals Publications established in 1864 Multilingual journals Multidisciplinary scientific journals Société Mathématique de France academic journals {{mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Motivic Albanese
In music, a motif IPA: ( /moʊˈtiːf/) (also motive) is a short musical phrase, a salient recurring figure, musical fragment or succession of notes that has some special importance in or is characteristic of a composition: "The motive is the smallest structural unit possessing thematic identity". The '' Encyclopédie de la Pléiade'' regards it as a "melodic, rhythmic, or harmonic cell", whereas the 1958 ''Encyclopédie Fasquelle'' maintains that it may contain one or more cells, though it remains the smallest analyzable element or phrase within a subject. It is commonly regarded as the shortest subdivision of a theme or phrase that still maintains its identity as a musical idea. "The smallest structural unit possessing thematic identity". Grove and Larousse also agree that the motif may have harmonic, melodic and/or rhythmic aspects, Grove adding that it "is most often thought of in melodic terms, and it is this aspect of the motif that is connoted by the term 'fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Albanese Scheme
Albanese is an Italian surname. In some cases it means " Albanian", in reference to the Arbëreshë people (Italo-Albanians) of southern Italy or someone of Albanian origin. The surname is common in southern Italy but more rare elsewhere in the country. "Albanése, -i : dall'etnico Albanése o, nel Sud, 'appartenente alle colonie albanesi' (in Abruzzo, Puglie, Campania, Calabria e Sicilia)." Notable people with the surname include: * Albano Albanese (1921–2010), Italian hurdler and high jumper * Alessandro Albanese (born 2000), Belgian professional footballer * Antonio Albanese (1937–2013), Italian fencer * Anthony Albanese (born 1963), Australian politician and current prime minister of Australia * Antonio Albanese (born 1964), Italian comedian, actor, director, and writer * Catherine L. Albanese (born 1940), American religious studies scholar, professor, lecturer, and author * Charles Albanese (1937–1995), American serial killer * Diego Albanese (born 1973), Argentine ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intermediate Jacobian
In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by putting a complex manifold, complex structure on the torus H^n(M,\R)/H^n(M,\Z) for ''n'' odd. There are several different natural ways to put a complex structure on this torus, giving several different sorts of intermediate Jacobians, including one due to and one due to . The ones constructed by Weil have natural polarizations if ''M'' is projective, and so are abelian varieties, while the ones constructed by Griffiths behave well under holomorphic deformations. A complex structure on a real vector space is given by an automorphism ''I'' with square -1. The complex structures on H^n(M,\R) are defined using the Hodge decomposition : H^(M,) \otimes = H^(M)\oplus\cdots\oplus H^(M). On H^ the Weil complex structure I_W is multiplication by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invertible Sheaves
In mathematics, an invertible sheaf is a coherent sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O''''X''-modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Definition An invertible sheaf is a locally free sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O''''X''-modules, that is, we have :S \otimes T\ isomorphic to ''O''''X'', which acts as identity element for the tensor product. The most significant cases are those coming from algebraic geometry and complex geometry. For spaces such as (locally) Noetherian schemes or complex manifolds, one can actually replace 'locally free' by 'coherent' in the definition. The invertible sheaves in those theories are in effect the line bundles appropriately formulat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Picard Scheme
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group :H^1 (X, \mathcal_X^).\, For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group. The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. Examples * The Picard group of the spectrum of a Dedekind domain is its ''ideal class group''. * The invertible sheaves on projective space P''n''(''k'') for ''k'' a field, are the twisting sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Duality Theory Of Abelian Varieties
In mathematics, a dual abelian variety can be defined from an abelian variety ''A'', defined over a field ''K''. Definition To an abelian variety ''A'' over a field ''k'', one associates a dual abelian variety ''A''v (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrized by a ''k''-variety ''T'' is defined to be a line bundle ''L'' on ''A''×''T'' such that # for all t \in T, the restriction of ''L'' to ''A''× is a degree 0 line bundle, # the restriction of ''L'' to ×''T'' is a trivial line bundle (here 0 is the identity of ''A''). Then there is a variety ''A''v and a line bundle P \to A \times A^\vee,, called the Poincaré bundle, which is a family of degree 0 line bundles parametrized by ''A''v in the sense of the above definition. Moreover, this family is universal, that is, to any family ''L'' parametrized by ''T'' is associated a unique morphism ''f'': ''T'' → ''A''v so that ''L'' is isomorphic to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel–Moore Homology
In topology, Borel−Moore homology or homology with closed support is a homology theory for locally compact spaces, introduced by Armand Borel and John Moore in 1960. For reasonable compact spaces, Borel−Moore homology coincides with the usual singular homology. For non-compact spaces, each theory has its own advantages. In particular, a closed oriented submanifold defines a class in Borel–Moore homology, but not in ordinary homology unless the submanifold is compact. Note: Borel equivariant cohomology is an invariant of spaces with an action of a group ''G''; it is defined as H^*_G(X) = H^*((EG \times X)/G). That is not related to the subject of this article. Definition There are several ways to define Borel−Moore homology. They all coincide for reasonable spaces such as manifolds and locally finite CW complexes. Definition via sheaf cohomology For any locally compact space ''X'', Borel–Moore homology with integral coefficients is defined as the cohomology of the dua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]