Al-Jabr
''The Compendious Book on Calculation by Completion and Balancing'' ( ar, كتاب المختصر في حساب الجبر والمقابلة, ; la, Liber Algebræ et Almucabola), also known as ''Al-Jabr'' (), is an Arabic mathematical treatise on algebra written by the Persian polymath Muḥammad ibn Mūsā al-Khwārizmī around 820 CE while he was in the Abbasid capital of Baghdad, modern-day Iraq. ''Al-Jabr'' was a landmark work in the history of mathematics, establishing algebra as an independent discipline, and with the term "algebra" itself derived from ''Al-Jabr''. The ''Compendious Book'' provided an exhaustive account of solving for the positive roots of polynomial equations up to the second degree. It was the first text to teach algebra in an elementary form and for its own sake. It also introduced the fundamental concept of "reduction" and "balancing" (which the term ''al-jabr'' originally referred to), the transposition of subtracted terms to the other side ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
History Of Algebra
Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every proof must use the completeness of the real numbers, which is not an algebraic property). This article describes the history of the theory of equations, called here "algebra", from the origins to the emergence of algebra as a separate area of mathematics. Etymology The word "algebra" is derived from the Arabic word الجبر ''al-jabr'', and this comes from the treatise written in the year 830 by the medieval Persian mathematician, Muhammad ibn Mūsā al-Khwārizmī, whose Arabic title, '' Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala'', can be translated as ''The Compendious Book on Calcul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
'Abd Al-Hamīd Ibn Turk
( fl. 830), known also as ( ar, ابومحمد عبدالحمید بن واسع بن ترک الجیلی) was a ninth-century Muslim mathematician. Not much is known about his life. The two records of him, one by Ibn Nadim and the other by al-Qifti are not identical. Al-Qifi mentions his name as ʿAbd al-Hamīd ibn Wase ibn Turk al-Jili. Jili means from Gilan. On the other hand, Ibn Nadim mentions his nisbah as ''khuttali'' (), which is a region located north of the Oxus and west of Badakhshan. In one of the two remaining manuscripts of his ''al-jabr wa al-muqabila'', the recording of his nisbah is closer to ''al-Jili''.Ibn Turk in ''Dāʾirat al-Maʿārif-i Buzurg-i Islāmī'', Vol. 3, no. 1001, Tehran. To be translated in Encyclopædia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Problem
A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems. It can also be a problem referring to the nature of mathematics itself, such as Russell's Paradox. Real-world problems Informal "real-world" mathematical problems are questions related to a concrete setting, such as "Adam has five apples and gives John three. How many has he left?". Such questions are usually more difficult to solve than regular mathematical exercises like "5 − 3", even if one knows the mathematics required to solve the problem. Known as word problems, they are used in mathematics education to teach students to connect real-world situations to the abstract language of mathematics. In general, to use mathematics for solving a real-world problem, the first s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sharaf Al-Dīn Al-Tūsī
Sharaf al-Dīn al-Muẓaffar ibn Muḥammad ibn al-Muẓaffar al-Ṭūsī ( fa, شرفالدین مظفر بن محمد بن مظفر توسی; 1135 – 1213) was an Iranian mathematician and astronomer of the Islamic Golden Age (during the Middle Ages). Biography Tusi was probably born in Tus, Iran. Little is known about his life, except what is found in the biographies of other scientistsO'Connor & Robertson ( 1999) and that most mathematicians today can trace their lineage back to him. Around 1165, he moved to Damascus and taught mathematics there. He then lived in Aleppo for three years, before moving to Mosul, where he met his most famous disciple Kamal al-Din ibn Yunus (1156-1242). This Kamal al-Din would later become the teacher of another famous mathematician from Tus, Nasir al-Din al-Tusi. According to Ibn Abi Usaibi'a, Sharaf al-Din was "outstanding in geometry and the mathematical sciences, having no equal in his time". Mathematics Al-Tusi has been cre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Babylonian Mathematics
Babylonian mathematics (also known as ''Assyro-Babylonian mathematics'') are the mathematics developed or practiced by the people of Mesopotamia, from the days of the early Sumerians to the centuries following the fall of Babylon in 539 BC. Babylonian mathematical texts are plentiful and well edited. With respect to time they fall in two distinct groups: one from the Old Babylonian period (1830–1531 BC), the other mainly Seleucid from the last three or four centuries BC. With respect to content, there is scarcely any difference between the two groups of texts. Babylonian mathematics remained constant, in character and content, for nearly two millennia. In contrast to the scarcity of sources in Egyptian mathematics, knowledge of Babylonian mathematics is derived from some 400 clay tablets unearthed since the 1850s. Written in Cuneiform script, tablets were inscribed while the clay was moist, and baked hard in an oven or by the heat of the sun. The majority of recovered clay tab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diophantus
Diophantus of Alexandria ( grc, Διόφαντος ὁ Ἀλεξανδρεύς; born probably sometime between AD 200 and 214; died around the age of 84, probably sometime between AD 284 and 298) was an Alexandrian mathematician, who was the author of a series of books called ''Arithmetica'', many of which are now lost. His texts deal with solving algebraic equations. Diophantine equations ("Diophantine geometry") and Diophantine approximations are important areas of mathematical research. Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality. This term was rendered as ''adaequalitas'' in Latin, and became the technique of adequality developed by Pierre de Fermat to find maxima for functions and tangent lines to curves. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetica
''Arithmetica'' ( grc-gre, Ἀριθμητικά) is an Ancient Greek text on mathematics written by the mathematician Diophantus () in the 3rd century AD. It is a collection of 130 algebraic problems giving numerical solutions of determinate equations (those with a unique solution) and indeterminate equations. Summary Equations in the book are presently called Diophantine equations. The method for solving these equations is known as Diophantine analysis. Most of the ''Arithmetica'' problems lead to quadratic equations. In Book 3, Diophantus solves problems of finding values which make two linear expressions simultaneously into squares or cubes. In book 4, he finds rational powers between given numbers. He also noticed that numbers of the form 4n + 3 cannot be the sum of two squares. Diophantus also appears to know that every number can be written as the sum of four squares. If he did know this result (in the sense of having proved it as opposed to merely conjectured it), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abbasid Caliphate
The Abbasid Caliphate ( or ; ar, الْخِلَافَةُ الْعَبَّاسِيَّة, ') was the third caliphate to succeed the Islamic prophet Muhammad. It was founded by a dynasty descended from Muhammad's uncle, Abbas ibn Abdul-Muttalib (566–653 CE), from whom the dynasty takes its name. They ruled as caliphs for most of the caliphate from their capital in Baghdad in modern-day Iraq, after having overthrown the Umayyad Caliphate in the Abbasid Revolution of 750 CE (132 AH). The Abbasid Caliphate first centered its government in Kufa, modern-day Iraq, but in 762 the caliph Al-Mansur founded the city of Baghdad, near the ancient Babylonian capital city of Babylon. Baghdad became the center of science, culture and invention in what became known as the Golden Age of Islam. This, in addition to housing several key academic institutions, including the House of Wisdom, as well as a multiethnic and multi-religious environment, garnered it a worldwide reputation as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Expository Writing
The rhetorical modes (also known as modes of discourse) are a long-standing attempt to broadly classify the major kinds of language-based communication, particularly writing and speaking, into narration, description, exposition, and argumentation. First attempted by Samuel P. Newman in ''A Practical System of Rhetoric'' in 1827, the modes of discourse have long influenced US writing instruction and particularly the design of mass-market writing assessments, despite critiques of these classification's explanatory power for non-school writing. Definitions Different definitions of mode apply to different types of writing. Chris Baldick defines mode as an unspecific critical term usually designating a broad but identifiable kind of literary method, mood, or manner that is not tied exclusively to a particular form or genre. Examples are the ''satiric'' mode, the ''ironic'', the ''comic'', the ''pastoral'', and the ''didactic''. Frederick Crews uses the term to mean a type of es ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |