Airy Function
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interva ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plot Of The Airy Function Ai(z) In The Complex Plane From -2-2i To 2+2i With Colors Created With Mathematica 13
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the story of a piece of fiction Music * ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * ''Plot'' (film), a 1973 French-Italian film * ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a ship's on-board sensors * Plot plan, a type of drawing which shows existing and proposed conditions for a given area Land * Plot (land), a piece of land used for building on ** Burial plot, a piece of land a person is buried in * Quadrat, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AiryAi Abs Contour
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interval lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AiryAi Imag Contour
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interval lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AiryAi Real Contour
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interval lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AiryAi Arg Surface
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interval lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AiryAi Abs Surface
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interval lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AiryAi Imag Surface
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interval lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AiryAi Real Surface
In the physical sciences, the Airy function (or Airy function of the first kind) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function and the related function , are linearly independent solutions to the differential equation \frac - xy = 0 , known as the Airy equation or the Stokes equation. This is the simplest second-order linear differential equation with a turning point (a point where the character of the solutions changes from oscillatory to exponential). Definitions For real values of ''x'', the Airy function of the first kind can be defined by the improper Riemann integral: \operatorname(x) = \dfrac\int_0^\infty\cos\left(\dfrac + xt\right)\, dt\equiv \dfrac \lim_ \int_0^b \cos\left(\dfrac + xt\right)\, dt, which converges by Dirichlet's test. For any real number x there is positive real number M such that function \dfrac3 + xt is increasing, unbounded and convex with continuous and unbounded derivative on interval lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Formula
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \quad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stokes Phenomenon
In complex analysis the Stokes phenomenon, discovered by , is that the asymptotic behavior of functions can differ in different regions of the complex plane, and that these differences can be described in a quantitative way. These regions are bounded by what are called Stokes lines or anti-Stokes lines. Stokes lines and anti-Stokes lines Somewhat confusingly, mathematicians and physicists use the terms "Stokes line" and "anti-Stokes line" in opposite ways. The lines originally studied by Stokes are what some mathematicians call anti-Stokes lines and what physicists call Stokes lines. (These terms are also used in optics for the unrelated Stokes lines and anti-Stokes lines in Raman scattering). This article uses the physicist's convention, which is historically more accurate and seems to be becoming more common among mathematicians. recommends the term "principal curve" for (physicist's) anti-Stokes lines. Informally the anti-Stokes lines are roughly where some term in the asy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |