Adaptive Optimization
Adaptive optimization is a technique in computer science that performs dynamic recompilation of portions of a program based on the current execution profile. With a simple implementation, an adaptive optimizer may simply make a trade-off between just-in-time compilation and interpreting instructions. At another level, adaptive optimization may take advantage of local data conditions to optimize away branches and to use inline expansion to decrease the cost of procedure calls. Consider a hypothetical banking application that handles transactions one after another. These transactions may be checks, deposits, and a large number of more obscure transactions. When the program executes, the actual data may consist of clearing tens of thousands of checks without processing a single deposit and without processing a single check with a fraudulent account number. An adaptive optimizer would compile assembly code to optimize for this common case. If the system then started processing tens ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamic Recompilation
In computer science, dynamic recompilation is a feature of some emulators and virtual machines, where the system may recompile some part of a program during execution. By compiling during execution, the system can tailor the generated code to reflect the program's run-time environment, and potentially produce more efficient code by exploiting information that is not available to a traditional static compiler. Uses Most dynamic recompilers are used to convert machine code between architectures at runtime. This is a task often needed in the emulation of legacy gaming platforms. In other cases, a system may employ dynamic recompilation as part of an adaptive optimization strategy to execute a portable program representation such as Java or .NET Common Language Runtime bytecodes. Full-speed debuggers also utilize dynamic recompilation to reduce the space overhead incurred in most deoptimization techniques, and other features such as dynamic thread migration. Tasks The main task ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Program
A computer program is a sequence or set of instructions in a programming language for a computer to Execution (computing), execute. It is one component of software, which also includes software documentation, documentation and other intangible components. A ''computer program'' in its human-readable form is called source code. Source code needs another computer program to Execution (computing), execute because computers can only execute their native machine instructions. Therefore, source code may be Translator (computing), translated to machine instructions using a compiler written for the language. (Assembly language programs are translated using an Assembler (computing), assembler.) The resulting file is called an executable. Alternatively, source code may execute within an interpreter (computing), interpreter written for the language. If the executable is requested for execution, then the operating system Loader (computing), loads it into Random-access memory, memory and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Just-in-time Compilation
In computing, just-in-time (JIT) compilation (also dynamic translation or run-time compilations) is compilation (of computer code) during execution of a program (at run time) rather than before execution. This may consist of source code translation but is more commonly bytecode translation to machine code, which is then executed directly. A system implementing a JIT compiler typically continuously analyses the code being executed and identifies parts of the code where the speedup gained from compilation or recompilation would outweigh the overhead of compiling that code. JIT compilation is a combination of the two traditional approaches to translation to machine code— ahead-of-time compilation (AOT), and interpretation—and combines some advantages and drawbacks of both. Roughly, JIT compilation combines the speed of compiled code with the flexibility of interpretation, with the overhead of an interpreter and the additional overhead of compiling and linking (not j ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interpreted Language
In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution: # Parse the source code and perform its behavior directly; # Translate source code into some efficient intermediate representation or object code and immediately execute that; # Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter's virtual machine. Early versions of Lisp programming language and minicomputer and microcomputer BASIC dialects would be examples of the first type. Perl, Raku, Python, MATLAB, and Ruby are examples of the second, while UCSD Pascal is an example of the third type. Source programs are compiled ahead of time and stored as machine independent code, which is then linked at run- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inline Expansion
In computing, inline expansion, or inlining, is a manual or compiler optimization that replaces a function call site with the body of the called function. Inline expansion is similar to macro expansion, but occurs during compiling, without changing the source code (the text), while macro expansion occurs before compiling, and results in different text that is then processed by the compiler. Inlining is an important optimization, but has complex effects on performance. As a rule of thumb, some inlining will improve speed at very minor cost of space, but excess inlining will hurt speed, due to inlined code consuming too much of the instruction cache, and also cost significant space. A survey of the modest academic literature on inlining from the 1980s and 1990s is given in Peyton Jones & Marlow 1999. Overview Inline expansion is similar to macro expansion as the compiler places a new copy of the function in each place it is called. Inlined functions run a little faster than the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
HotSpot (virtual Machine)
HotSpot, released as Java HotSpot Performance Engine, is a Java virtual machine for desktop and server computers, developed by Sun Microsystems which was purchased by and became a division of Oracle Corporation in 2010. Its features improved performance via methods such as just-in-time compilation and adaptive optimization. It is the de facto Java Virtual Machine, serving as the reference implementation of the Java programming language. History The Java HotSpot Performance Engine was released on April 27, 1999, built on technologies from an implementation of the programming language Smalltalk named Strongtalk, originally developed by Longview Technologies, which traded as Animorphic. The Longview virtual machine was based on the Self virtual machine, with an interpreter replacing the fast-and-dumb first compiler. When Sun cancelled the Self project, two key people, Urs Hölzle and Lars Bak left Sun to start Longview. In 1997, Sun Microsystems purchased Animorphic. Shor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamo Project
In computing, just-in-time (JIT) compilation (also dynamic translation or run-time compilations) is compilation (of computer code) during execution of a program (at run time) rather than before execution. This may consist of source code translation but is more commonly bytecode translation to machine code, which is then executed directly. A system implementing a JIT compiler typically continuously analyses the code being executed and identifies parts of the code where the speedup gained from compilation or recompilation would outweigh the overhead of compiling that code. JIT compilation is a combination of the two traditional approaches to translation to machine code— ahead-of-time compilation (AOT), and interpretation—and combines some advantages and drawbacks of both. Roughly, JIT compilation combines the speed of compiled code with the flexibility of interpretation, with the overhead of an interpreter and the additional overhead of compiling and linking (not just ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Java Virtual Machine
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes what is required in a JVM implementation. Having a specification ensures interoperability of Java programs across different implementations so that program authors using the Java Development Kit (JDK) need not worry about idiosyncrasies of the underlying hardware platform. The JVM reference implementation is developed by the OpenJDK project as open source code and includes a JIT compiler called HotSpot. The commercially supported Java releases available from Oracle are based on the OpenJDK runtime. Eclipse OpenJ9 is another open source JVM for OpenJDK. JVM specification The Java virtual machine is an abstract (virtual) computer defined by a specification. It is a part of the Java runtime environment. The garbage collection ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Java Bytecode
Java bytecode is the instruction set of the Java virtual machine (JVM), the language to which Java and other JVM-compatible source code is compiled. Each instruction is represented by a single byte, hence the name bytecode, making it a compact form of data. Due to the nature of bytecode, a Java bytecode program is runnable on any machine with a compatible JVM, without the lengthy process of compiling from source code. Java bytecode is used at runtime either interpreted by a JVM or compiled to machine code via just-in-time (JIT) compilation and run as a native application. As Java bytecode is designed for a cross-platform compatibility and security, a Java bytecode application tends to run consistently across various hardware and software configurations. Relation to Java In general, a Java programmer does not need to understand Java bytecode or even be aware of it. However, as suggested in the IBM developerWorks journal, "Understanding bytecode and what bytecode is li ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reversible Computing
Reversible computing is any model of computation where every step of the process is time-reversible. This means that, given the output of a computation, it's possible to perfectly reconstruct the input. In systems that progress deterministically from one state to another, a key requirement for reversibility is a one-to-one correspondence between each state and its successor. Reversible computing is considered an unconventional approach to computation and is closely linked to quantum computing, where the principles of quantum mechanics inherently ensure reversibility (as long as quantum states are not measured or " collapsed"). Reversibility There are two major, closely related types of reversibility that are of particular interest for this purpose: physical reversibility and logical reversibility. A process is said to be ''physically reversible'' if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting thi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Profile-guided Optimization
In computer programming, profile-guided optimization (PGO, sometimes pronounced as ''pogo''), also known as profile-directed feedback (PDF) or feedback-directed optimization (FDO), is the compiler optimization technique of using prior analyses of software artifacts or behaviors (" profiling") to improve the expected runtime performance of the program. Method Optimization techniques based on static program analysis of the source code consider code performance improvements without actually executing the program. No dynamic program analysis is performed. For example, inferring or placing formal constraints on the number of iterations a loop is likely to execute is fundamentally useful when considering whether to unroll it or not, but such facts typically rely on complex runtime factors that are difficult to conclusively establish. Usually, static analysis will have incomplete information and only be able to approximate estimates of the eventual runtime conditions. The first high ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |