APC Laboratory
   HOME
*





APC Laboratory
The Astroparticle and Cosmology (APC) laboratory in Paris gathers researchers (experimentalists, theorists and observers) working in different areas including high-energy astrophysics, cosmology, gravitation, and neutrino physics. The institute was founded in January 2005 and soon moved to new campus of Paris Diderot University in the Paris Rive Gauche area. The laboratory is a "Mixed Research Unit" in French terminology, funded by Paris Diderot University, the Centre national de la recherche scientifique (represented by three of its Institutes: mainly IN2P3, but also INSU and INP), the Commissariat à l'énergie atomique et aux énergies alternatives, and the Paris Observatory. The first director of the laboratory was Pierre Binetruy (2005-2013). From January 2014 until December 2017 the director was Stavros Katsanevas, followed by Sotiris Loucatos, and Antoine Kouchner (since July 2018). Research activities Cosmology This group, headed bKenneth Ganga includes two m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paris Diderot University
Paris Diderot University, also known as Paris 7 (french: Université Paris Diderot), was a French university located in Paris, France. It was one of the inheritors of the historic University of Paris, which was split into 13 universities in 1970. Paris Diderot merged with Paris Descartes University in 2019 to form Paris Cité University. With two Nobel Prize laureates, two Fields Medal winners and two former French Ministers of Education among its faculty or former faculty, the university was famous for its teaching in science, especially in mathematics. Many fundamental results of the theory of probability were discovered at one of its research centres, the ''Laboratoire de Probabilités et Modèles Aléatoires'' (Laboratory of Probability and Random Models). History Paris Diderot University was one of the heirs of the old University of Paris, which ceased to exist in 1970. Professors from the faculties of Science, of Medicine and of Humanities chose then to create a new mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vera C
Vera may refer to: Names *Vera (surname), a surname (including a list of people with the name) *Vera (given name), a given name (including a list of people and fictional characters with the name) **Vera (), archbishop of the archdiocese of Tarragona Places Spain *Vera, Almería, a municipality in the province of Almería, Andalusia * Vera de Bidasoa, a municipality in the autonomous community of Navarra *La Vera, a comarca in the province of Cáceres, Extremadura United States *Vera, Illinois, an unincorporated community * Vera, Kansas, a ghost town * Vera, Missouri, an unincorporated community * Vera, Oklahoma, a town *Vera, Texas, an unincorporated community * Vera, Virginia, an unincorporated community *Veradale, Washington, originally known as Vera, CDP Elsewhere *Vera, Santa Fe, a city in the province of Santa Fe, Argentina * Vera Department, an administrative subdivision (departamento) of the province of Santa Fe * Vera, Mato Grosso, Brazil, a municipality * Cape Vera, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ANTARES (telescope)
ANTARES is the name of a neutrino detector residing 2.5 km under the Mediterranean Sea off the coast of Toulon, France. It is designed to be used as a directional neutrino telescope to locate and observe neutrino flux from cosmic origins in the direction of the Southern Hemisphere of the Earth, a complement to the South Pole neutrino detector IceCube that detects neutrinos from both hemispheres. The name comes from Astronomy with a Neutrino Telescope and Abyss environmental RESearch project; the acronym is also the name of the prominent star Antares. The experiment is a recognized CERN experiment (RE6). Other neutrino telescopes designed for use in the nearby area include the Greek NESTOR telescope and the Italian NEMO telescope, which are both in early design stages. The data taking of ANTARES was finished in February 2022, after 16 years of continuous operation. Design The array contains a set of twelve separate vertical strings of photomultiplier tubes. Each one has 7 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrinos
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrinos muon neutrinos (), or tau neutrinos (), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cosmic Rays
Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk is deflected off into space by the magnetosphere or the heliosphere. Cosmic rays were discovered by Victor Hess in 1912 in balloon experiments, for which he was awarded the 1936 Nobel Prize in Physics. Direct measurement of cosmic rays, especially at lower energies, has been possible since the launch of the first satellites in the late 1950s. Particle detectors similar to those used in nuclear and high-energy physics are used on satellites and space probes for research into cosmic rays. Data from the Fermi Space Telescope (2013) have been interpreted as evidence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Space Variable Objects Monitor
The Space Variable Objects Monitor (SVOM) is a planned small X-ray telescope satellite under development by China National Space Administration (CNSA), Chinese Academy of Sciences (CAS) and the French Space Agency ( CNES), to be launched in the spring of 2024. SVOM will study the explosions of massive stars by analysing the resulting gamma-ray bursts. The light-weight X-ray mirror for SVOM weighs just . SVOM will add new capabilities to the work of finding gamma-ray bursts currently being done by the multinational satellite '' Swift Gamma-Ray Burst Mission''. Its anti-solar pointing strategy makes the Earth cross the field of view of its payload every orbit. Objectives Using synergy between space and ground instruments, the mission has these scientific objectives: * Permit the detection of all known types of Gamma-ray bursts (GRB) * Provide fast, reliable GRB positions * Measure the broadband spectral shape of the prompt emission (from visible to MeV) * Measure the tempor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cherenkov Telescope Array
The Cherenkov Telescope Array or CTA is a multinational, worldwide project to build a new generation of ground-based gamma-ray instrument in the energy range extending from some tens of GeV to about 300 TeV. It is proposed as an open observatory and will consist of two arrays of Imaging Atmospheric Cherenkov telescopes (IACTs), a first array at the Northern Hemisphere with emphasis on the study of extragalactic objects at the lowest possible energies, and a second array at the Southern Hemisphere, which is to cover the full energy range and concentrate on galactic sources. The physics program of CTA goes beyond high energy astrophysics into cosmology and fundamental physics. Building on the technology of current generation ground-based gamma-ray detectors ( MAGIC, HESS, and VERITAS), CTA will be ten times more sensitive and have unprecedented accuracy in its detection of high-energy gamma rays. Current gamma-ray telescope arrays host up to five individual telescopes, but CTA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




High Energy Stereoscopic System
High Energy Stereoscopic System (H.E.S.S.) is a system of imaging atmospheric Cherenkov telescopes (IACTs) for the investigation of cosmic gamma rays in the photon energy range of 0.03 to 100 TeV. The acronym was chosen in honour of Victor Hess, who was the first to observe cosmic rays. The name also emphasizes two main features of the installation, namely the simultaneous observation of air showers with several telescopes, under different viewing angles, and the combination of telescopes to a large system to increase the effective detection area for gamma rays. H.E.S.S. permits the exploration of gamma-ray sources with intensities at a level of a few thousandth parts of the flux of the Crab Nebula. H.E.S.S. consists of five telescopes: four with mirrors just under 12 m in diameter, arranged as a square with 120 m sides, and one larger telescope with a 28 m mirror, located at the centre of the array. The four 12 m telescopes began operation in 2004, wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

INTEGRAL
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., an integral assigns numbers to functions in a way that describes Displacement (geometry), displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with Derivative, differentiation, integration is a fundamental, essential operation of calculus,Integral calculus is a very well established mathematical discipline for which there are many sources. See and , for example. and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others. The integrals enumerated here are those termed definite integrals, which can be int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Rays
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation ''gamma rays'' based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power. Gamma rays from radioactive decay are in the energy range from a few kiloelectronvolts (keV) to approximately 8 megaelectronvolts (MeV), corresponding to the typical energy levels in nuclei with reasonably long lif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Black Holes
A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly. Objects whose gravitational fields are too strong for light to escape were first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]