821 Fanny
821 Fanny ('' prov. designation:'' ''or'' ) is a dark background asteroid and slow rotator from the central regions of the asteroid belt. It was discovered on 31 March 1916, by German astronomer Max Wolf at the Heidelberg-Königstuhl State Observatory in southwest Germany. The carbonaceous C-type asteroid (Ch) has an exceptionally long rotation period of 236.6 hours and measures approximately in diameter. Any reference of the asteroid's name to a person is unknown. Orbit and classification ''Fanny'' is a non-family asteroid of the main belt's background population when applying the hierarchical clustering method to its proper orbital elements. It orbits the Sun in the central asteroid belt at a distance of 2.2–3.4 AU once every 4 years and 7 months (1,686 days; semi-major axis of 2.77 AU). Its orbit has an eccentricity of 0.21 and an inclination of 5 ° with respect to the ecliptic. The body's observation arc begins at the Heidelberg Observatory on 1 April 1916 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Max Wolf
Maximilian Franz Joseph Cornelius Wolf (21 June 1863 – 3 October 1932) was a German astronomer and a pioneer in the field of astrophotography. He was the chairman of astronomy at the University of Heidelberg and director of the Heidelberg-Königstuhl State Observatory from 1902 until his death in 1932. Early life Max Wolf was born in Heidelberg, Germany on 21 June 1863, the son of medical doctor Franz Wolf. His father encouraged an interest in science and built an observatory for his son in the garden of the family home. It is from here that Wolf was credited with his first astronomical discovery, comet 14P/Wolf, in 1884. Life at the university Wolf attended his local university and, in 1888, at the age of 25, was awarded a Ph.D. by the University of Heidelberg. He spent one year of post-graduate study in Stockholm, the only significant time he would spend outside of Heidelberg in his life. He returned to the University of Heidelberg and accepted the position of ''pri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asteroid Belt
The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, called asteroids or minor planets. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. The asteroid belt is the smallest and innermost known circumstellar disc in the Solar System. About 60% of its mass is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is calculated to be 3% that of the Moon. Ceres, the only object in the asteroid belt large enough to be a dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas, and Hygiea have mean diameters less than 600 km. The remaining bodies range down to the size of a dust particle. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Auguste Charlois
Auguste Honoré Charlois (November 26, 1864 – March 26, 1910) was a French astronomer who discovered 99 asteroids while working at the Nice Observatory in southeastern France. Asteroid Discovery His first discovery was the asteroid 267 Tirza in 1887. He photographed 433 Eros on the very night of its discovery by Gustav Witt, but was not able to act quickly enough before Witt announced his find. Although he started searching for asteroids in the era of visual detection, by 1891 Max Wolf had pioneered the use of astrophotography to drastically speed up the rate of detection of asteroids, and both Wolf and Charlois separately discovered far more asteroids than would have been feasible by visual detection. In 1899, Charlois received the Prix Jules Janssen, the highest award of the Société astronomique de France, the French astronomical society, and was also awarded the Valz Prize by the French Academy of Sciences in 1889 for his work on calculating asteroid orbits. Murder ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Named Minor Planets (alphabetical)
This is a list of named minor planets in an alphabetical, case-insensitive order grouped by the first letter of their name. New namings, typically proposed by the List of minor planet discoverers, discoverer and approved by the Working Group Small Body Nomenclature (WGSBN) of the International Astronomical Union, are published nowadays in their ''WGSBN Bulletin'' and summarized in a dedicated list several times a year. Over the last four decades, the list has grown significantly with an average rate of 492 new namings published every year (or 1.35 namings per day). While in March 1979, only 1924 minor planets had received a name and completed the List of minor planets#Designation, designation process, , the list contains 23,542 named objects. This, however, only accounts for of all numbered bodies, as there are over List of minor planets#Main index, 600,000 minor planets with a well established orbit which is a precondition for receiving a name. Of all these minor-planet names ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minor Planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor planet'', but that year's meeting reclassified minor planets and comets into dwarf planets and small Solar System bodies (SSSBs).Press release, IAU 2006 General Assembly: Result of the IAU Resolution votes International Astronomical Union, August 24, 2006. Accessed May 5, 2008. Minor planets include asteroids ( near-Earth object
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heidelberg Observatory
Heidelberg (; Palatine German: '''') is a city in the German state of Baden-Württemberg, situated on the river Neckar in south-west Germany. As of the 2016 census, its population was 159,914, of which roughly a quarter consisted of students. Located about south of Frankfurt, Heidelberg is the fifth-largest city in Baden-Württemberg. Heidelberg is part of the densely populated Rhine-Neckar Metropolitan Region. Heidelberg University, founded in 1386, is Germany's oldest and one of Europe's most reputable universities. Heidelberg is a scientific hub in Germany and home to several internationally renowned research facilities adjacent to its university, including the European Molecular Biology Laboratory and four Max Planck Institutes. The city has also been a hub for the arts, especially literature, throughout the centuries, and it was designated a "City of Literature" by the UNESCO Creative Cities Network. Heidelberg was a seat of government of the former Electorate of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Observation Arc
In observational astronomy, the observation arc (or arc length) of a Solar System body is the time period between its earliest and latest observations, used for tracing the body's path. It is usually given in days or years. The term is mostly used in the discovery and tracking of asteroids and comets. Arc length has the greatest influence on the accuracy of an orbit. The number and spacing of intermediate observations has a lesser effect. Short arcs A very short arc leaves a high uncertainty parameter. The object might be in one of many different orbits, at many distances from Earth. In some cases, the initial arc was too short to determine if the object was in orbit around the Earth, or orbiting out in the asteroid belt. With a 1-day observation arc, was thought to be a trans-Neptunian dwarf planet, but is now known to be a 1 km main-belt asteroid. With an observation arc of 3 days, was thought to be a Mars-crossing asteroid that could be a threat to Earth, but was later ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ecliptic
The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system. Sun's apparent motion The ecliptic is the apparent path of the Sun throughout the course of a year. Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 hours ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For pla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * circular orbit: ''e'' = 0 * elliptic orbit: 0 < ''e'' < 1 * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semi-major Axis
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle. The length of the semi-major axis of an ellipse is related to the semi-minor axis's length through the eccentricity and the semi-latus rectum \ell, as follows: The semi-major axis of a hyperbola is, depending on the convention, plus or minus one half of the distance between the two branches. Thus it is the distance from the center ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Orbital Elements
__NOTOC__ The proper orbital elements or proper elements of an orbit are constants of motion of an object in space that remain practically unchanged over an astronomically long timescale. The term is usually used to describe the three quantities: *''proper semimajor axis'' (''ap''), *''proper eccentricity'' (''ep''), and *''proper inclination'' (''ip''). The proper elements can be contrasted with the osculating Keplerian orbital elements observed at a particular time or epoch, such as the semi-major axis, eccentricity, and inclination. Those osculating elements change in a quasi-periodic and (in principle) predictable manner due to such effects as perturbations from planets or other bodies, and precession (e.g. perihelion precession). In the Solar System, such changes usually occur on timescales of thousands of years, while proper elements are meant to be practically constant over at least tens of millions of years. For most bodies, the osculating elements are relatively close ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |