60000 (number)
60,000 (sixty thousand) is the natural number that comes after 59,999 and before 60,001. It is a round number. It is the value of \varphi( F25). Selected numbers in the range 60,000–69,999 60,001 to 60,999 * 60,049 = Leyland number * 60,101 = smallest prime with period of reciprocal 100 61,000 to 61,999 62,000 to 62,999 * 62,208 = 3- smooth number * 62,210 = Markov number * 62,745 = Carmichael number 63,000 to 63,999 * 63,020 = amicable number with 76084 * 63,360 = inches in a mile * 63,600 = number of free 12-ominoes * 63,750 = pentagonal pyramidal number * 63,973 = Carmichael number 64,000 to 64,999 * 64,000 = 403; also 64,000 Dollar Question * 64,009 = sum of the cubes of the first 22 positive integers * 64,079 = Lucas number * 64,442 = Number of integer degree intersections on Earth: 360 longitudes * 179 latitudes + 2 poles = 64442. 65,000 to 65,999 * 65,025 = 2552, palindromic in base 11 (4494411) * 65,279 = Unicode code point for byte order mark * 65,53 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Degree (angle)
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane (mathematics), plane angle in which one Turn (geometry), full rotation is 360 degrees. It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI Brochure, SI brochure as an Non-SI units mentioned in the SI, accepted unit. Because a full rotation equals 2 radians, one degree is equivalent to radians. History The original motivation for choosing the degree as a unit of rotations and angles is unknown. One theory states that it is related to the fact that 360 is approximately the number of days in a year. Ancient astronomers noticed that the sun, which follows through the ecliptic path over the course of the year, seems to advance in its path by approximately one degree each day. Some ancient calendars, such as the Iranian calendar, Persian calendar and the Babylonian calendar, used 360 days for a year. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Happy Prime
In number theory, a happy number is a number which eventually reaches 1 when replaced by the sum of the square of each digit. For instance, 13 is a happy number because 1^2+3^2=10, and 1^2+0^2=1. On the other hand, 4 is not a happy number because the sequence starting with 4^2=16 and 1^2+6^2=37 eventually reaches 2^2+0^2=4, the number that started the sequence, and so the process continues in an infinite cycle without ever reaching 1. A number which is not happy is called sad or unhappy. More generally, a b-happy number is a natural number in a given number base b that eventually reaches 1 when iterated over the perfect digital invariant function for p = 2. The origin of happy numbers is not clear. Happy numbers were brought to the attention of Reg Allenby (a British author and senior lecturer in pure mathematics at Leeds University) by his daughter, who had learned of them at school. However, they "may have originated in Russia" . Happy numbers and perfect digital invarian ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cousin Prime
In number theory, cousin primes are prime numbers that differ by four. Compare this with twin primes, pairs of prime numbers that differ by two, and sexy primes, pairs of prime numbers that differ by six. The cousin primes (sequences and in OEIS) below 1000 are: :(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281), (307, 311), (313, 317), (349, 353), (379, 383), (397, 401), (439, 443), (457, 461), (463,467), (487, 491), (499, 503), (613, 617), (643, 647), (673, 677), (739, 743), (757, 761), (769, 773), (823, 827), (853, 857), (859, 863), (877, 881), (883, 887), (907, 911), (937, 941), (967, 971) Properties The only prime belonging to two pairs of cousin primes is 7. One of the numbers will always be divisible by 3, so is the only case where all three are primes. An example of a large proven cousin prime pair is for :p = 4111286921397 \times ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Twin Prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair (2, 3) is not considered to be a pair of twin primes. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Prime
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: : 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... . History and motivation In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent ''p'' if ''p'' is regular. This focused attention on the irregular primes. In 1852, Genocchi was able to prove that the first case of Fermat's Last Theorem is true for an exponent ''p'', if is not an irregular pair. Kummer improved this further in 1857 by showing that for the "first case" of Fermat's Last Theorem (see Sophie Germain's theorem) it is sufficient to establish that either or fails to be an irregular pair. Kummer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Root
The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, in base 10, the digital root of the number 12345 is 6 because the sum of the digits in the number is 1 + 2 + 3 + 4 + 5 = 15, then the addition process is repeated again for the resulting number 15, so that the sum of 1 + 5 equals 6, which is the digital root of that number. In base 10, this is equivalent to taking the remainder upon division by 9 (except when the digital root is 9, where the remainder upon division by 9 will be 0), which allows it to be used as a divisibility rule. Formal definition Let n be a natural number. For base b > 1, we define the digit sum F_ : \mathbb \rightarrow \mathbb to be the following: :F_(n) = \sum_^ d_i where k = \lfloor \log_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat Prime
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form :F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: : 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ... . If 2''k'' + 1 is prime and ''k'' > 0, then ''k'' must be a power of 2, so 2''k'' + 1 is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are ''F''0 = 3, ''F''1 = 5, ''F''2 = 17, ''F''3 = 257, and ''F''4 = 65537 ; heuristics suggest that there are no more. Basic properties The Fermat numbers satisfy the following recurrence relations: : F_ = (F_-1)^+1 : F_ = F_ \cdots F_ + 2 for ''n'' ≥ 1, : F_ = F_ + 2^F_ \cdots F_ : F_ = F_^2 - 2(F_-1)^2 for ''n'' ≥ 2. Each of these relations can be proved by mathematical induction. From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
65,537
65537 is the integer after 65536 (number), 65536 and before 65538. In mathematics 65537 is the largest known prime number of the form 2^ +1 (n = 4). Therefore, a regular polygon, regular 65537-gon, polygon with 65537 sides is constructible polygon, constructible with compass and unmarked straightedge. Johann Gustav Hermes gave the first explicit construction of this polygon. In number theory, primes of this form are known as Fermat number, Fermat primes, named after the mathematician Pierre de Fermat. The only known prime Fermat numbers are 2^ + 1 = 2^ + 1 = 3, 2^ + 1= 2^ +1 = 5, 2^ + 1 = 2^ +1 = 17, 2^ + 1= 2^ + 1= 257, 2^ + 1 = 2^ + 1 = 65537. In 1732, Leonhard Euler found that the next Fermat number is composite: 2^ + 1 = 2^ + 1 = 4294967297 = 641 \times 6700417 In 1880, showed that 2^ + 1 = 2^ + 1 = 274177 \times 67280421310721 65537 is also the 17th Jacobsthal–Lucas number, and currently the largest known integer ''n'' for which the number 10^ + 27 is a probable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Knuth's Up-arrow Notation
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. In his 1947 paper, R. L. Goodstein introduced the specific sequence of operations that are now called ''hyperoperations''. Goodstein also suggested the Greek names tetration, pentation, etc., for the extended operations beyond exponentiation. The sequence starts with a unary operation (the successor function with ''n'' = 0), and continues with the binary operations of addition (''n'' = 1), multiplication (''n'' = 2), exponentiation (''n'' = 3), tetration (''n'' = 4), pentation (''n'' = 5), etc. Various notations have been used to represent hyperoperations. One such notation is H_n(a,b). Knuth's up-arrow notation \uparrow is an alternative notation. It is obtained by replacing /math> in the square bracket notation by n-2 arrows. For example: * the single arrow \uparrow represents exponentiation (iterated multiplication) 2 \uparrow 4 = H_3(2,4) = 2\times ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
65,536
65536 is the natural number following 65535 and preceding 65537. 65536 is a power of two: 2^ (2 to the 16th power). 65536 is the smallest number with ''exactly'' 17 divisors. In mathematics 65536 is 2^, so in tetration notation 65536 is 42. When expressed using Knuth's up-arrow notation, 65536 is 2 \uparrow 16 , which is equal to 2 \uparrow 2 \uparrow 2 \uparrow 2 , which is equivalent to 2 \uparrow\uparrow 4 or 2 \uparrow\uparrow\uparrow 3 . 65536 is a superperfect number – a number such that σ(σ(''n'')) = 2''n''. A 16-bit number can distinguish 65536 different possibilities. For example, unsigned binary notation exhausts all possible 16-bit codes in uniquely identifying the numbers 0 to 65535. In this scheme, 65536 is the least natural number that can ''not'' be represented with 16 bits. Conversely, it is the "first" or smallest positive integer that requires 17 bits. 65536 is the only power of 2 less than 231000 that does not contain the digits ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer (computer Science)
In computer science, an integer is a datum of integral data type, a data type that represents some range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor register or memory address as an integer. Value and representation The ''value'' of an item with an integral type is the mathematical integer that it corresponds to. Integral types may be ''unsigned'' (capable of representing only non-negative integers) or ''signed'' (capable of representing negative integers as well). An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. Some programming languages allow oth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |