3267 Glo
   HOME
*





3267 Glo
3267 Glo, provisional designation , is an eccentric Phocaean asteroid and sizable Mars-crosser from the inner regions of the asteroid belt, approximately in diameter. It was discovered on 3 January 1981, by American astronomer Edward Bowell at Lowell's Anderson Mesa Station in Flagstaff, Arizona. It was later named after American astronomer Eleanor Helin. Orbit and classification ''Glo'' is an eccentric member of the Phocaea family (), that orbits the Sun in the inner asteroid belt at a distance of 1.6–3.0  AU once every 3 years and 7 months (1,299 days; semi-major axis of 2.33 AU). Its orbit has an eccentricity of 0.30 and an inclination of 24 ° with respect to the ecliptic. The body's observation arc begins with its official discovery observation at Anderson Mesa in January 1981. Physical characteristics The asteroid has been characterized as an L- and S-type asteroid by Pan-STARRS large-scale survey. Spectral type PanSTARRS photometric survey, ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edward Bowell
Edward L. G. "Ted" Bowell (born 1943 in London), is an American astronomer. Bowell was educated at Emanuel School London, University College, London, and the University of Paris. He was principal investigator of the Lowell Observatory Near-Earth-Object Search (LONEOS). He has discovered a large number of asteroids, both as part of LONEOS and in his own right before LONEOS began. Among the latter are the Jovian asteroids 2357 Phereclos, 2759 Idomeneus, 2797 Teucer, 2920 Automedon, 3564 Talthybius, 4057 Demophon, and (4489) 1988 AK. He also co-discovered the periodic comet 140P/Bowell-Skiff and the non-periodic comet C/1980 E1. The outer main-belt asteroid 2246 Bowell was named in his honor. The official naming citation was published on 1 January 1981 (). List of discovered minor planets Edward Bowell discovered 571 minor planets. References External links Edward "Ted" Bowell, Lowell Observatory Lowell Observatory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * circular orbit: ''e'' = 0 * elliptic orbit: 0 < ''e'' < 1 *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LCDB Quality Code
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnitude (astronomy)
In astronomy, magnitude is a unitless measure of the brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminance, ... of an astronomical object, object in a defined passband, often in the visible spectrum, visible or infrared spectrum, but sometimes across all wavelengths. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus. The scale is Logarithmic scale, logarithmic and defined such that a magnitude 1 star is exactly 100 times brighter than a magnitude 6 star. Thus each step of one magnitude is \sqrt[5] \approx 2.512 times brighter than the magnitude 1 higher. The brighter an object appears, the lower the value of its magnitude, with the brightest objects reaching negative values. Astronomers use two different defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Period
The rotation period of a celestial object (e.g., star, gas giant, planet, moon, asteroid) may refer to its sidereal rotation period, i.e. the time that the object takes to complete a single revolution around its axis of rotation relative to the background stars, measured in sidereal time. The other type of commonly used rotation period is the object's synodic rotation period (or ''solar day''), measured in solar time, which may differ by a fraction of a rotation or more than one rotation to accommodate the portion of the object's orbital period during one day. Measuring rotation For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous or fluid bodies, such as stars and gas giants, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a gas giant (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ondřejov Observatory
The Ondřejov Observatory (; cs, Observatoř Ondřejov) is the principal observatory of the Astronomical Institute () of the Academy of Sciences of the Czech Republic. It is located near the village of Ondřejov, southeast of Prague, Czech Republic. It has a wide telescope, which is the largest in the Czech Republic. History The facility was constructed in 1898, by Czech amateur astronomer and entrepreneur Josef Jan Frič as a private observatory. On 28 October 1928, he donated the facility to the Czechoslovak state to celebrate the tenth anniversary of its independence. The observatory, located at an altitude of , away from the air and light pollution of urban Prague, was administered by Charles University until the founding of the Czechoslovak Academy of Sciences in 1953, which from then on operated it as part of its Astronomical Institute in conjunction with other Czechoslovak observatories. In 1967, a telescope measuring in width was added to the observatory, which at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Petr Pravec
Petr Pravec (born September 17, 1967) is a Czech astronomer and a discoverer of minor planets, born in Třinec, Czech Republic. Pravec is a prolific discoverer of binary asteroids, expert in photometric observations and rotational lightcurves at Ondřejov Observatory. He is credited by the Minor Planet Center with the discovery and co-discovery of 350 numbered minor planets, and is leading the effort of a large consortium of stations called "BinAst" to look for multiplicity in the near-Earth objects and inner main-belt populations. He is a member of the ''Academy of Sciences of the Czech Republic''. The main-belt asteroid 4790 Petrpravec, discovered by Eleanor Helin Eleanor Francis "Glo" Helin (née Francis, 19 November 1932 – 25 January 2009) was an American astronomer. She was principal investigator of the Near-Earth Asteroid Tracking (NEAT) program of NASA's Jet Propulsion Laboratory. (Some sources gi ... in 1988, is named after him. The official naming citation was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lightcurve
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Albedo
Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation. Surface albedo is defined as the ratio of radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While bi-hemispherical reflectance is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as obtained from flux measurements) to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asteroid Spectral Types
An asteroid spectral type is assigned to asteroids based on their emission spectrum, color, and sometimes albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not internally differentiated, the surface and internal compositions are presumably similar, while large bodies such as Ceres and Vesta are known to have internal structure. Over the years, there has been a number of surveys that resulted in a set of different taxonomic systems such as the Tholen, SMASS and Bus–DeMeo classifications. Taxonomic systems In 1975, astronomers Clark R. Chapman, David Morrison, and Ben Zellner developed a simple taxonomic system for asteroids based on color, albedo, and spectral shape. The three categories were labelled " C" for dark carbonaceous objects, " S" for stony (silicaceous) objects, and "U" for those that did not fit into either C or S. This basic division of asteroid spectra has since been expanded and clarified.Thomas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PanSTARRS
The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1; obs. code: F51 and Pan-STARRS2 obs. code: F52) located at Haleakala Observatory, Hawaii, US, consists of astronomical cameras, telescopes and a computing facility that is surveying the sky for moving or variable objects on a continual basis, and also producing accurate astrometry and photometry of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released. Description The Pan-STARRS Project is a collaboration between the University of Hawaii Institute for Astronomy, MIT Lincoln Laboratory, Maui High Performance Computing Center and Science Applications International Corporation. Telescope construction was funded by the U.S. Air Force. By detecting differences from previous observations of the same areas of the sky, Pan-STARRS is discovering many new asteroids, comets, variable stars, supern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pan-STARRS
The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1; List of observatory codes, obs. code: IAU code#F51, F51 and Pan-STARRS2 obs. code: IAU code#F52, F52) located at Haleakala Observatory, Hawaii, US, consists of astronomical cameras, telescopes and a computing facility that is Astronomical survey, surveying the sky for moving or variable objects on a continual basis, and also producing accurate astrometry and photometry (astronomy), photometry of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released. Description The Pan-STARRS Project is a collaboration between the University of Hawaii Institute for Astronomy (Hawaii), Institute for Astronomy, MIT Lincoln Laboratory, MHPCC#Maui High Performance Computing Center (MHPCC), Maui High Performance Computing Center and Science Applications International Corporation. Telescope construction was funded b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]